Search
Search
Close this search box.

Development and validation of a machine learning model to predict time to renal replacement therapy in patients with chronic kidney disease – BMC Nephrology

  • Fresenius Medical Care. Annual report; 2021.

  • GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the global burden of Disease Study 2017. Lancet. 2020;395:709–33.

    Article 

    Google Scholar
     

  • Kidney Disease. Improving global outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3:1–150.


    Google Scholar
     

  • Tangri N, Stevens LA, Griffith J, Tighiouart H, Djurdjev O, Naimark D, et al. A predictive model for progression of chronic kidney disease to kidney failure. JAMA. 2011;305:1553–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • National Institute for Health and Care Excellence. Chronic kidney disease: Assessment and management (NICE Guideline 203).; 2021. http://www.nice.org.uk/guidance/ng203. (Accessed October 20, 2023).

  • Szeto CC, Leung CB, Wong TYH, Chow KM, Wang AY, Lui SF, et al. Extrapolation of reciprocal creatinine plot is not reliable in predicting the onset of dialysis in patients with progressive renal insufficiency. J Intern Med. 2003;253:335–42.

    Article 
    PubMed 

    Google Scholar
     

  • Shah BV, Levey AS. Spontaneous changes in the rate of decline in reciprocal serum creatinine: errors in predicting the progression of renal disease from extrapolation of the slope. J Am Soc Nephrol. 1992;2:1186–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dias R, Torkamani A. Artificial intelligence in clinical and genomic diagnostics. Genome Med. 2019;11:70.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rajpurkar P, Chen E, Banerjee O, Topol EJ. AI in health and medicine. Nat Med. 2022;28:31–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu PR, Lu L, Zhang JY, Huo TT, Liu SX, Ye ZW. Application of artificial intelligence in medicine: an overview. Curr Med Sci. 2021;41:1105–15.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan Q, Chen K, Yu Y, Le NQK, Chua MCH. Prediction of anticancer peptides based on an ensemble model of deep learning and machine learning using ordinal positional encoding. Brief Bioinform. 2023;24:bbac630.

    Article 
    PubMed 

    Google Scholar
     

  • Kha Q-H, Le V-H, Hung TNK, Nguyen NTK, Le NQK. Development and validation of an explainable machine learning-based prediction model for drug-food interactions from chemical structures. Sens (Basel). 2023;23:3962.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ardila D, Kiraly AP, Bharadwaj S, Choi B, Reicher JJ, Peng L, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med. 2019;25:954–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vagliano I, Chesnaye NC, Leopold JH, Jager KJ, Abu-Hanna A, Schut MC. Machine learning models for predicting acute kidney injury: a systematic review and critical appraisal. Clin Kidney J. 2022;15:2266–80.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flechet M, Falini S, Bonetti C, Güiza F, Schetz M, Van den Berghe G, et al. Machine learning versus physicians’ prediction of acute kidney injury in critically ill adults: a prospective evaluation of the AKIpredictor. Crit Care. 2019;23:282.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanmarchi F, Fanconi C, Golinelli D, Gori D, Hernandez-Boussard T, Capodici A. Predict, diagnose, and treat chronic kidney disease with machine learning: a systematic literature review. J Nephrol. 2023;36:1101–17.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bai Q, Su C, Tang W, Li Y. Machine learning to predict end stage kidney disease in chronic kidney disease. Sci Rep. 2022;12:8377.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zacharias HU, Altenbuchinger M, Schultheiss UT, Raffler J, Kotsis F, Ghasemi S, et al. A predictive model for progression of CKD to kidney failure based on routine laboratory tests. Am J Kidney Dis. 2022;79:217–230e1.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Su CT, Chang YP, Ku YT, Lin CM. Machine learning models for the prediction of renal failure in chronic kidney disease: a retrospective cohort study. Diagnostics (Basel). 2022;12:2454.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Segal Z, Kalifa D, Radinsky K, Ehrenberg B, Elad G, Maor G, et al. Machine learning algorithm for early detection of end-stage renal disease. BMC Nephrol. 2020;21:518.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dai P, Chang W, Xin Z, Cheng H, Ouyang W, Luo A. Retrospective study on the influencing factors and prediction of hospitalization expenses for chronic renal failure in China based on random forest and lasso regression. Front Public Health. 2021;9:678276.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bellocchio F, Lonati C, Ion Titapiccolo J, Nadal J, Meiselbach H, Schmid M, et al. Validation of a novel predictive algorithm for kidney failure in patients suffering from chronic kidney disease: the prognostic reasoning system for chronic kidney disease (Progres-CKD). Int J Environ Res Public Health. 2021;18:12649.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guligowska A, Corsonello A, Pigłowska M, Roller-Wirnsberger R, Wirnsberger G, Ärnlöv J et al. Association between kidney function, nutritional status and anthropometric measures in older people: the screening for CKD among older people across Europe (SCOPE) study. BMC Geriatr. 2020;20;Suppl 1:366.

  • Gao F, Huang Z, Liang JJ, Kang Y, Ling Y, He Y, et al. Association of malnutrition with all-cause and cardiovascular mortality in patients with mild to severe chronic kidney disease undergoing coronary angiography: a large multicenter longitudinal study. Int Urol Nephrol. 2023;55:3225–36.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang J, Xiao X, Wu Y, Yang J, Zou Y, Zhao Y, et al. Prognostic nutritional index as a predictor of diabetic nephropathy progression. Nutrients. 2022;14:3634.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ikizler TA, Burrowes JD, Byham-Gray LD, Campbell KL, Carrero JJ, Chan W, et al. KDOQI Clinical practice guideline for nutrition in CKD: 2020 update. Am J Kidney Dis. 2020;76:1–S107.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seiichi M, Enyu I, Masaru H, Yoshinari Y, Kimio T, Kosaku N, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53:982–92.

    Article 

    Google Scholar
     

  • Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in Python. JMLR. 2011;12:2825–30.

    MathSciNet 

    Google Scholar
     

  • Basu S, Faghmous JH, Doupe P. Machine learning methods for precision medicine research designed to reduce health disparities: a structured tutorial. Ethn Dis. 2020;30:217–28.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pérez-Enciso M, Zingaretti LM. A guide for using deep learning for complex trait genomic prediction. Genes (Basel). 2019;20:553.

    Article 

    Google Scholar
     

  • Kvålseth TO. Cautionary note about R2. Am Stat. 1985;39:279–85.


    Google Scholar
     

  • Chicco D, Warrens MJ, Jurman G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput Sci. 2021;7:e623.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scikit Learn. Validation curves: plotting scores to evaluate models. 2024. https://scikit-learn.org/stable/modules/learning_curve.html, (Accessed January 29, 2024).

  • Leist AK, Klee M, Kim JH, Rehkopf DH, Bordas SPA, Muniz-Terrera G, et al. Mapping of machine learning approaches for description, prediction, and causal inference in the social and health sciences. Sci Adv. 2022;8:eabk1942.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nojima J, Meguro S, Ohkawa N, Furukoshi M, Kawai T, Itoh H. One-year eGFR decline rate is a good predictor of prognosis of renal failure in patients with type 2 diabetes. Proc Jpn Acad Ser B Phys Biol Sci. 2017;93:746–54.

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Skupien J, Warram JH, Smiles AM, Stanton RC, Krolewski AS. Patterns of estimated glomerular filtration rate decline leading to end-stage renal disease in type 1 diabetes. Diabetes Care. 2016;39:2262–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grams ME, Sang Y, Ballew SH, Matsushita K, Astor BC, Carrero JJ, et al. Evaluating glomerular filtration rate slope as a surrogate end point for ESKD in clinical trials: an individual participant meta-analysis of observational data. J Am Soc Nephrol. 2019;30:1746–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watanabe Y, Yamagata K, Nishi S, Hirakata H, Hanafusa N, Saito C, et al. Japanese society for dialysis therapy clinical guideline for hemodialysis initiation for maintenance hemodialysis. Ther Apher Dial. 2015;19(Suppl 1):93–107.

    Article 
    PubMed 

    Google Scholar
     

  • Lundberg SM, Lee SI. A unified approach to interpreting model predictions. NIPS. 2017.

  • Chesser AM, Baker LR. Temporary vascular access for first dialysis is common, undesirable and usually avoidable. Clin Nephrol. 1999;51:228–32.

    CAS 
    PubMed 

    Google Scholar
     

  • Simmons CPL, McMillan DC, McWilliams K, Sande TA, Fearon KC, Tuck S, et al. Prognostic tools in patients with advanced cancer: a systematic review. J Pain Symptom Manage. 2017;53:962–970e10.

    Article 
    PubMed 

    Google Scholar
     

  • Hui D, Paiva CE, Del Fabbro EG, Steer C, Naberhuis J, van de Wetering M, et al. Prognostication in advanced cancer: update and directions for future research. Support Care Cancer. 2019;27:1973–84.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Okada K, Tsuchiya K, Sakai K, Kuragano T, Uchida A, Tsuruya K, et al. Shared decision making for the initiation and continuation of dialysis: a proposal from the Japanese society for Dialysis Therapy. Ren Replace Ther. 2021;7:56.

    Article 

    Google Scholar
     

  • Ioannou K. Diabetic nephropathy: is it always there? Assumptions, weaknesses and pitfalls in the diagnosis. Horm (Athens). 2017;16:351–61.


    Google Scholar
     

  • Mogensen CE, Christensen CK, Vittinghus E. The stages in diabetic renal disease. With emphasis on the stage of incipient diabetic nephropathy. Diabetes. 1983;32(Suppl 2):64–78.

    Article 
    PubMed 

    Google Scholar
     

  • He Y, Shen Z, Cui P. Towards non-I.I.D. image classification: a dataset and baselines. Pattern Recognit. 2021;110:107383.

    Article 

    Google Scholar
     

  • Lee H-T, Cheon H-R, Lee S-H, Shim M, Hwang H-J. Risk of data leakage in estimating the diagnostic performance of a deep-learning-based computer-aided system for psychiatric disorders. Sci Rep. 2023;13(1):16633.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD Statement. BMJ. 2015;350:g7594.

    Article 
    PubMed 

    Google Scholar
     

  • López OAM, López AM, Crossa J. Multivariate statistical machine learning methods for genomic prediction. Berlin/Heidelberg, Germany: Springer; 2022. Overfitting, model tuning, and evaluation of prediction performance;109–39.

    Book 

    Google Scholar
     

  • Kernbach JM, Staartjes VE. Foundations of machine learning-based clinical prediction modeling: part II-Generalization and overfitting. Acta Neurochir Suppl. 2022;134:15–21.

    Article 
    PubMed 

    Google Scholar
     

  • Gygi JP, Kleinstein SH, Guan L. Predictive overfitting in immunological applications: pitfalls and solutions. Hum Vaccin Immunother. 2023;19:2251830.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vatcheva KP, Lee MJ, McCormick JB, Rahbar MH. Multicollinearity in regression analyses conducted in epidemiologic studies. Epidemiol (Sunnyvale). 2016;6:227.

    Article 

    Google Scholar
     

  • Kim JH. Multicollinearity and misleading statistical results. Korean J Anesthesiol. 2019;72:558–69.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chan JY-L, Leow SMH, Bea KT, Cheng WK, Phoong SW, Hong Z, et al. Mitigating the multicollinearity problem and its machine learning approach: a review. Mathematics. 2022;10:1283.

    Article 

    Google Scholar
     

  • Petch J, Di S, Nelson W. Opening the black box: the promise and limitations of explainable machine learning in cardiology. Can J Cardiol. 2022;38:204–13.

    Article 
    PubMed 

    Google Scholar
     

  • Sathyan A, Weinberg AI, Cohen K. Interpretable AI for bio-medical applications. Complex Eng Syst. 2022;2:18.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar