Search
Search
Close this search box.

Applications of SGLT2 inhibitors beyond glycaemic control – Nature Reviews Nephrology

  • McGuire, D. K. et al. Association of SGLT2 inhibitors with cardiovascular and kidney outcomes in patients with type 2 diabetes: a meta-analysis. JAMA Cardiol. 6, 148–158 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04564742 (2023).

  • US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04509674 (2023).

  • McDonagh, T. A. et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 42, 3599–3726 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heidenreich, P. A. et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 79, 1757–1780 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • UK Kidney Association. UK Kidney Association clinical practice guideline: sodium-glucose co-transporter-2 (SGLT-2) inhibition in adults with kidney disease.https://ukkidney.org/sites/renal.org/files/UKKA%20guideline_SGLT2i%20in%20adults%20with%20kidney%20disease%20v1%2020.10.21.pdf (2021).

  • Cowie, M. R. & Fisher, M. SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nat. Rev. Cardiol. 17, 761–772 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Youssef, M. E. et al. Unlocking the full potential of SGLT2 inhibitors: expanding applications beyond glycemic control. Int. J. Mol. Sci. 24, 6039 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Curthoys, N. P. & Moe, O. W. Proximal tubule function and response to acidosis. Clin. J. Am. Soc. Nephrol. 9, 1627–1638 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hou, Y. C., Zheng, C. M., Yen, T. H. & Lu, K. C. Molecular mechanisms of SGLT2 inhibitor on cardiorenal protection. Int. J. Mol. Sci. 21, 7833 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heerspink, H. J., Perkins, B. A., Fitchett, D. H., Husain, M. & Cherney, D. Z. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation 134, 752–772 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cherney, D. Z., Kanbay, M. & Lovshin, J. A. Renal physiology of glucose handling and therapeutic implications. Nephrol. Dial. Transpl. 35, i3–i12 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zaccardi, F. et al. Efficacy and safety of sodium-glucose co-transporter-2 inhibitors in type 2 diabetes mellitus: systematic review and network meta-analysis. Diabetes Obes. Metab. 18, 783–794 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • DeFronzo, R. A. et al. Characterization of renal glucose reabsorption in response to dapagliflozin in healthy subjects and subjects with type 2 diabetes. Diabetes Care 36, 3169–3176 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ojima, A., Matsui, T., Nishino, Y., Nakamura, N. & Yamagishi, S. Empagliflozin, an inhibitor of sodium-glucose cotransporter 2 exerts anti-inflammatory and antifibrotic effects on experimental diabetic nephropathy partly by suppressing AGEs-receptor axis. Horm. Metab. Res. 47, 686–692 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, L. et al. Dapagliflozin alleviates advanced glycation end product induced podocyte injury through AMPK/mTOR mediated autophagy pathway. Cell Signal. 90, 110206 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thomas, M. C. & Cherney, D. Z. I. The actions of SGLT2 inhibitors on metabolism, renal function and blood pressure. Diabetologia 61, 2098–2107 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cravedi, P. & Remuzzi, G. Pathophysiology of proteinuria and its value as an outcome measure in chronic kidney disease. Br. J. Clin. Pharmacol. 76, 516–523 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karg, M. V. et al. SGLT-2-inhibition with dapagliflozin reduces tissue sodium content: a randomised controlled trial. Cardiovasc. Diabetol. 17, 5 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hallow, K. M., Helmlinger, G., Greasley, P. J., McMurray, J. J. V. & Boulton, D. W. Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis. Diabetes Obes. Metab. 20, 479–487 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uthman, L. et al. Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na+/H+ exchanger, lowering of cytosolic Na(+) and vasodilation. Diabetologia 61, 722–726 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trum, M., Riechel, J. & Wagner, S. Cardioprotection by SGLT2 inhibitors-does it all come down to Na+? Int. J. Mol. Sci. 22, 7976 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peyton, K. J., Behnammanesh, G., Durante, G. L. & Durante, W. Canagliflozin inhibits human endothelial cell inflammation through the induction of heme oxygenase-1. Int. J. Mol. Sci. 23, 8777 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campbell, N. K., Fitzgerald, H. K. & Dunne, A. Regulation of inflammation by the antioxidant haem oxygenase 1. Nat. Rev. Immunol. 21, 411–425 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Consoli, V., Sorrenti, V., Grosso, S. & Vanella, L. Heme oxygenase-1 signaling and redox homeostasis in physiopathological conditions. Biomolecules 11, 589 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gager, G. M. et al. Effects of SGLT2 inhibitors on ion homeostasis and oxidative stress associated mechanisms in heart failure. Biomed. Pharmacother. 143, 112169 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oraby, M. A., El-Yamany, M. F., Safar, M. M., Assaf, N. & Ghoneim, H. A. Dapagliflozin attenuates early markers of diabetic nephropathy in fructose-streptozotocin-induced diabetes in rats. Biomed. Pharmacother. 109, 910–920 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ye, Y., Bajaj, M., Yang, H. C., Perez-Polo, J. R. & Birnbaum, Y. SGLT-2 inhibition with dapagliflozin reduces the activation of the Nlrp3/ASC inflammasome and attenuates the development of diabetic cardiomyopathy in mice with type 2 diabetes. Further augmentation of the effects with saxagliptin, a DPP4 inhibitor. Cardiovasc. Drugs Ther. 31, 119–132 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Niu, Y. et al. Canagliflozin ameliorates NLRP3 inflammasome-mediated inflammation through inhibiting NF-kappaB signaling and upregulating Bif-1. Front. Pharmacol. 13, 820541 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdollahi, E. et al. Dapagliflozin exerts anti-inflammatory effects via inhibition of LPS-induced TLR-4 overexpression and NF-kappaB activation in human endothelial cells and differentiated macrophages. Eur. J. Pharmacol. 918, 174715 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Skrabic, R. et al. SGLT2 inhibitors in chronic kidney disease: from mechanisms to clinical practice. Biomedicines 10, 2458 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Androutsakos, T. et al. SGLT-2 inhibitors in NAFLD: expanding their role beyond diabetes and cardioprotection. Int. J. Mol. Sci. 23, 3107 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lupsa, B. C., Kibbey, R. G. & Inzucchi, S. E. Ketones: the double-edged sword of SGLT2 inhibitors? Diabetologia 66, 23–32 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ferrannini, E. et al. Shift to fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes 65, 1190–1195 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Youm, Y. H. et al. The ketone metabolite beta-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat. Med. 21, 263–269 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swanson, K. V., Deng, M. & Ting, J. P. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 19, 477–489 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tomita, I. et al. SGLT2 inhibition mediates protection from diabetic kidney disease by promoting ketone body-induced mTORC1 inhibition. Cell Metab. 32, 404–419.e6 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heerspink, H. J. L. et al. Canagliflozin reduces inflammation and fibrosis biomarkers: a potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease. Diabetologia 62, 1154–1166 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. A sodium-glucose cotransporter 2 inhibitor attenuates renal capillary injury and fibrosis by a vascular endothelial growth factor-dependent pathway after renal injury in mice. Kidney Int. 94, 524–535 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hesp, A. C. et al. The role of renal hypoxia in the pathogenesis of diabetic kidney disease: a promising target for newer renoprotective agents including SGLT2 inhibitors? Kidney Int. 98, 579–589 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lauritsen, K. M. et al. SGLT2 inhibition does not affect myocardial fatty acid oxidation or uptake, but reduces myocardial glucose uptake and blood flow in individuals with type 2 diabetes: a randomized double-blind, placebo-controlled crossover trial. Diabetes 70, 800–808 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, Y. M. et al. Cardiorenal protection of SGLT2 inhibitors – perspectives from metabolic reprogramming. EBioMedicine 83, 104215 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sano, M. A new class of drugs for heart failure: SGLT2 inhibitors reduce sympathetic overactivity. J. Cardiol. 71, 471–476 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Sano, M. Sodium glucose cotransporter (SGLT)-2 inhibitors alleviate the renal stress responsible for sympathetic activation. Ther. Adv. Cardiovasc. Dis. 14, 1753944720939383 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scheen, A. J. Effect of SGLT2 inhibitors on the sympathetic nervous system and blood pressure. Curr. Cardiol. Rep. 21, 70 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Li, T., Chen, Y., Gua, C. & Wu, B. Elevated oxidative stress and inflammation in hypothalamic paraventricular nucleus are associated with sympathetic excitation and hypertension in rats exposed to chronic intermittent hypoxia. Front. Physiol. 9, 840 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ye, S., Zhong, H., Yanamadala, S. & Campese, V. M. Oxidative stress mediates the stimulation of sympathetic nerve activity in the phenol renal injury model of hypertension. Hypertension 48, 309–315 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Manosroi, W., Danpanichkul, P. & Atthakomol, P. Effect of sodium-glucose cotransporter-2 inhibitors on aldosterone and renin levels in diabetes mellitus type 2 patients: a systematic review and meta-analysis. Sci. Rep. 12, 19603 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seidu, S., Kunutsor, S. K., Topsever, P. & Khunti, K. Benefits and harms of sodium-glucose co-transporter-2 inhibitors (SGLT2-I) and renin-angiotensin-aldosterone system inhibitors (RAAS-I) versus SGLT2-Is alone in patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Endocrinol. Diabetes Metab. 5, e00303 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Neuen, B. L. et al. SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 7, 845–854 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iacobellis, G. & Gra-Menendez, S. Effects of dapagliflozin on epicardial fat thickness in patients with type 2 diabetes and obesity. Obesity 28, 1068–1074 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Camarena, V. et al. Novel atherogenic pathways from the differential transcriptome analysis of diabetic epicardial adipose tissue. Nutr. Metab. Cardiovasc. Dis. 27, 739–750 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Díaz-Rodríguez, E. et al. Effects of dapagliflozin on human epicardial adipose tissue: modulation of insulin resistance, inflammatory chemokine production, and differentiation ability. Cardiovasc. Res. 114, 336–346 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Durante, W., Behnammanesh, G. & Peyton, K. J. Effects of sodium-glucose co-transporter 2 inhibitors on vascular cell function and arterial remodeling. Int J. Mol. Sci. 22, 8786 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lescano, C. H. et al. The sodium-glucose cotransporter-2 (SGLT2) inhibitors synergize with nitric oxide and prostacyclin to reduce human platelet activation. Biochem. Pharmacol. 182, 114276 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dhingra, N. K. et al. SGLT2 inhibitors and cardiac remodelling: a systematic review and meta-analysis of randomized cardiac magnetic resonance imaging trials. ESC Heart Fail. 8, 4693–4700 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herrington, W. G. et al. Cardiac, renal, and metabolic effects of sodium-glucose co-transporter 2 inhibitors: a position paper from the European Society of Cardiology ad-hoc task force on sodium-glucose co-transporter 2 inhibitors. Eur. J. Heart Fail. 23, 1260–1275 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cefalu, W. T. et al. Cardiovascular outcomes trials in type 2 diabetes: where do we go from here? Reflections from a diabetes care editors’ expert forum. Diabetes Care 41, 14–31 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zinman, B. et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 373, 2117–2128 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wanner, C. et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N. Eng. J. Med. 375, 323–334 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Nuffield Department of Population Health Renal Studies Group. SGLT2 inhibitor Meta-Analysis Cardio-Renal Trialists’ Consortium. Impact of diabetes on the effects of sodium glucose co-transporter-2 inhibitors on kidney outcomes: collaborative meta-analysis of large placebo-controlled trials. Lancet 400, 1788–1801 (2022).

    Article 

    Google Scholar
     

  • Perkovic, V. et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N. Engl. J. Med. 380, 2295–2306 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heerspink, H. J. L. et al. Dapagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 383, 1436–1446 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Herrington, W. G. et al. Empagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 388, 117–127 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Packer, M. et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N. Engl. J. Med. 383, 1413–1424 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McMurray, J. J. V. et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N. Engl. J. Med. 381, 1995–2008 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anker, S. D. et al. Empagliflozin in heart failure with a preserved ejection fraction. N. Engl. J. Med. 385, 1451–1461 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solomon, S. D. et al. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction. N. Engl. J. Med. 387, 1089–1098 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05374291 (2023).

  • US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03819153 (2024).

  • US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05254002 (2024).

  • Heerspink, H. J. L. et al. Change in albuminuria as a surrogate endpoint for progression of kidney disease: a meta-analysis of treatment effects in randomised clinical trials. Lancet Diabetes Endocrinol. 7, 128–139 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heerspink, H. J. et al. Canagliflozin slows progression of renal function decline independently of glycemic effects. J. Am. Soc. Nephrol. 28, 368–375 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Neal, B. et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N. Eng. J. Med. 377, 644–657 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Wiviott, S. D. et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N. Eng. J. Med. 380, 347–357 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Cannon, C. P. et al. Cardiovascular outcomes with ertugliflozin in type 2 diabetes. N. Engl. J. Med. 383, 1425–1435 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhatt, D. L. et al. Sotagliflozin in patients with diabetes and chronic kidney disease. N. Engl. J. Med. 384, 129–139 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Mosenzon, O. et al. Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: an analysis from the DECLARE-TIMI 58 randomised trial. Lancet Diabetes Endocrinol. 7, 606–617 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Persson, F. et al. Efficacy and safety of dapagliflozin by baseline glycemic status: a prespecified analysis from the DAPA-CKD trial. Diabetes Care 44, 1894–1897 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Afsar, B. et al. Sodium–glucose cotransporter inhibition in polycystic kidney disease: fact or fiction. Clin. Kidney J. 15, 1275–1283 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ujjawal, A., Schreiber, B. & Verma, A. Sodium-glucose cotransporter-2 inhibitors (SGLT2i) in kidney transplant recipients: what is the evidence? Ther. Adv. Endocrinol. Metab. 13, 20420188221090001 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neuen, B. L. et al. Effect of canagliflozin on renal and cardiovascular outcomes across different levels of albuminuria: data from the CANVAS Program. J. Am. Soc. Nephrol. 30, 2229–2242 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jardine, M. et al. Kidney, cardiovascular, and safety outcomes of canagliflozin according to baseline albuminuria: a CREDENCE secondary analysis. Clin. J. Am. Soc. Nephrol. 16, 384–395 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heerspink, H. J. L. et al. Effect of dapagliflozin on the rate of decline in kidney function in patients with chronic kidney disease with and without type 2 diabetes: a prespecified analysis from the DAPA-CKD trial. Lancet Diabetes Endocrinol. 9, 743–754 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Inker, L. A. et al. A meta-analysis of GFR slope as a surrogate endpoint for kidney failure. Nat. Med. 29, 1867–1876 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kraus, B. J. et al. Characterization and implications of the initial estimated glomerular filtration rate ‘dip’ upon sodium-glucose cotransporter-2 inhibition with empagliflozin in the EMPA-REG OUTCOME trial. Kidney Int. 99, 750–762 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jongs, N. et al. Correlates and consequences of an acute change in eGFR in response to the SGLT2 inhibitor dapagliflozin in patients with CKD. J. Am. Soc. Nephrol. 33, 2094–2107 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sridhar, V. S., Tuttle, K. R. & Cherney, D. Z. I. We can finally stop worrying about SGLT2 inhibitors and acute kidney injury. Am. J. Kidney Dis. 76, 454–456 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Neuen, B. L. et al. Sodium-glucose cotransporter 2 inhibitors and risk of hyperkalemia in people with type 2 diabetes: a meta-analysis of individual participant data from randomized, controlled trials. Circulation 145, 1460–1470 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Charlwood, C., Chudasama, J., Darling, A. L., Logan Ellis, H. & Whyte, M. B. Effect of sodium-glucose co-transporter 2 inhibitors on plasma potassium: a meta-analysis. Diabetes Res. Clin. Pract. 196, 110239 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Halden, T. A. S. et al. Efficacy and safety of empagliflozin in renal transplant recipients with posttransplant diabetes mellitus. Diabetes Care 42, 1067–1074 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oliveras, L., Montero, N. & Cruzado, J. M. Searching in the maze: sodium–glucose cotransporter-2 inhibitors in kidney transplant recipients to improve survival. Clin. Kidney J. 16, 909–913 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maffei, P., Bettini, S., Busetto, L. & Dassie, F. SGLT2 inhibitors in the management of type 1 diabetes (T1D): an update on current evidence and recommendations. Diabetes Metab. Syndr. Obes. 16, 3579–3598 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Inzucchi, S. E. et al. Improvement in cardiovascular outcomes with empagliflozin is independent of glycemic control. Circulation 138, 1904–1907 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Inzucchi, S. E. et al. Cardiovascular benefit of empagliflozin across the spectrum of cardiovascular risk factor control in the EMPA-REG OUTCOME trial. J. Clin. Endocrinol. Metab. 105, 3025–3035 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsai, P. C. et al. Neutral effects of SGLT2 inhibitors in acute coronary syndromes, peripheral arterial occlusive disease, or ischemic stroke: a meta-analysis of randomized controlled trials. Cardiovasc. Diabetol. 22, 57 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sattar, N. et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of randomised trials. Lancet Diabetes Endocrinol. 9, 653–662 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lam, C. S. P. et al. Efpeglenatide and clinical outcomes with and without concomitant sodium-glucose cotransporter-2 inhibition use in type 2 diabetes: exploratory analysis of the AMPLITUDE-O trial. Circulation 145, 565–574 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pitt, B. & Bhatt, D. L. Does SGLT1 inhibition add benefit to SGLT2 inhibition in type 2 diabetes? Circulation 144, 4–6 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zannad, F. et al. SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: a meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. Lancet 396, 819–829 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Butler, J. et al. Empagliflozin and health-related quality of life outcomes in patients with heart failure with reduced ejection fraction: the EMPEROR-Reduced trial. Eur. Heart J. 42, 1203–1212 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vaduganathan, M. et al. SGLT-2 inhibitors in patients with heart failure: a comprehensive meta-analysis of five randomised controlled trials. Lancet 400, 757–767 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Butler, J. et al. Empagliflozin, health status, and quality of life in patients with heart failure and preserved ejection fraction: the EMPEROR-Preserved trial. Circulation 145, 184–193 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kosiborod, M. N. et al. Effect of dapagliflozin on health status in patients with preserved or mildly reduced ejection fraction. J. Am. Coll. Cardiol. 81, 460–473 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McDonagh, T. A. et al. 2023 focused update of the 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 44, 3627–3639 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Voors, A. A. et al. The SGLT2 inhibitor empagliflozin in patients hospitalized for acute heart failure: a multinational randomized trial. Nat. Med. 28, 568–574 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhatt, D. L. et al. Sotagliflozin in patients with diabetes and recent worsening heart failure. N. Engl. J. Med. 384, 117–128 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berg, D. D. et al. Time to clinical benefit of dapagliflozin and significance of prior heart failure hospitalization in patients with heart failure with reduced ejection fraction. JAMA Cardiol. 6, 499–507 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vaduganathan, M. et al. Time to clinical benefit of dapagliflozin in patients with heart failure with mildly reduced or preserved ejection fraction: a prespecified secondary analysis of the DELIVER randomized clinical trial. JAMA Cardiol. 7, 1259–1263 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Provenzano, M. et al. POS-255 Effect of dapagliflozin on blood pressure in patients with CKD: a pre-specified analysis from DAPA-CKD. Kidney Int. Rep. 7, S112 (2022).

    Article 

    Google Scholar
     

  • Ye, N. et al. Blood pressure effects of canagliflozin and clinical outcomes in type 2 diabetes and chronic kidney disease. Circulation 143, 1735–1749 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Del Prato, S. et al. Long-term glycaemic response and tolerability of dapagliflozin versus a sulphonylurea as add-on therapy to metformin in patients with type 2 diabetes: 4-year data. Diabetes Obes. Metab. 17, 581–590 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Cheong, A. J. Y. et al. SGLT inhibitors on weight and body mass: a meta-analysis of 116 randomized-controlled trials. Obesity 30, 117–128 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai, X. et al. The association between the dosage of SGLT2 inhibitor and weight reduction in type 2 diabetes patients: a meta-analysis. Obesity 26, 70–80 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Inzucchi, S. E. et al. Empagliflozin treatment effects across categories of baseline HbA1c, body weight and blood pressure as an add-on to metformin in patients with type 2 diabetes. Diabetes Obes. Metab. 23, 425–433 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan, R. et al. Effect of SGLT-2 inhibitors on body composition in patients with type 2 diabetes mellitus: a meta-analysis of randomized controlled trials. PLoS ONE 17, e0279889 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cefalu, W. T. et al. Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes inadequately controlled with metformin (CANTATA-SU): 52 week results from a randomised, double-blind, phase 3 non-inferiority trial. Lancet 382, 941–950 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ridderstrale, M. et al. Comparison of empagliflozin and glimepiride as add-on to metformin in patients with type 2 diabetes: a 104-week randomised, active-controlled, double-blind, phase 3 trial. Lancet Diabetes Endocrinol. 2, 691–700 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Ferrannini, G. et al. Energy balance after sodium-glucose cotransporter 2 inhibition. Diabetes Care 38, 1730–1735 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mayne, K. J. et al. Effects of empagliflozin on fluid overload, weight and blood pressure in chronic kidney disease. J. Am. Soc. Nephrol. 35, 202–215 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Hollander, P. et al. Coadministration of canagliflozin and phentermine for weight management in overweight and obese individuals without diabetes: a randomized clinical trial. Diabetes Care 40, 632–639 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Frias, J. P. et al. Exenatide once weekly plus dapagliflozin once daily versus exenatide or dapagliflozin alone in patients with type 2 diabetes inadequately controlled with metformin monotherapy (DURATION-8): a 28 week, multicentre, double-blind, phase 3, randomised controlled trial. Lancet Diabetes Endocrinol. 4, 1004–1016 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, C., Luo, J., Jiang, M. & Wang, K. The efficacy and safety of the combination therapy with GLP-1 receptor agonists and SGLT-2 inhibitors in type 2 diabetes mellitus: a systematic review and meta-analysis. Front. Pharmacol. 13, 838277 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lundkvist, P. et al. Dapagliflozin once daily plus exenatide once weekly in obese adults without diabetes: sustained reductions in body weight, glycaemia and blood pressure over 1 year. Diabetes Obes. Metab. 19, 1276–1288 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rinella, M. E. et al. A multi-society Delphi consensus statement on new fatty liver disease nomenclature. Hepatology 78, 1966–1986 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Dufour, J. F. et al. Current therapies and new developments in NASH. Gut 71, 2123–2134 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sinha, B., Datta, D. & Ghosal, S. Meta-analysis of the effects of sodium glucose cotransporter 2 inhibitors in non-alcoholic fatty liver disease patients with type 2 diabetes. JGH Open 5, 219–227 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Shao, S. C., Kuo, L. T., Chien, R. N., Hung, M. J. & Lai, E. C. SGLT2 inhibitors in patients with type 2 diabetes with non-alcoholic fatty liver diseases: an umbrella review of systematic reviews. BMJ Open Diabetes Res Care 8, e001956 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xing, B. et al. Effects of sodium-glucose cotransporter 2 inhibitors on non-alcoholic fatty liver disease in patients with type 2 diabetes: a meta-analysis of randomized controlled trials. J. Diabetes Investig. 11, 1238–1247 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei, Q., Xu, X., Guo, L., Li, J. & Li, L. Effect of SGLT2 inhibitors on type 2 diabetes mellitus with non-alcoholic fatty liver disease: a meta-analysis of randomized controlled trials. Front. Endocrinol. 12, 635556 (2021).

    Article 

    Google Scholar
     

  • Wong, C. et al. Sodium-glucose co-transporter 2 inhibitors for non-alcoholic fatty liver disease in Asian patients with type 2 diabetes: a meta-analysis. Front. Endocrinol. 11, 609135 (2020).

    Article 

    Google Scholar
     

  • Taheri, H. et al. Effect of empagliflozin on liver steatosis and fibrosis in patients with non-alcoholic fatty liver disease without diabetes: a randomized, double-blind, placebo-controlled trial. Adv. Ther. 37, 4697–4708 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tobita, H. et al. Comparison of dapagliflozin and teneligliptin in nonalcoholic fatty liver disease patients without type 2 diabetes mellitus: a prospective randomized study. J. Clin. Biochem. Nutr. 68, 173–180 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spiazzi, B. F. et al. Sodium-glucose cotransporter-2 inhibitors and cancer outcomes: a systematic review and meta-analysis of randomized controlled trials. Diabetes Res. Clin. Pract. 198, 110621 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kohler, S., Lee, J., George, J. T., Inzucchi, S. E. & Zinman, B. Bladder cancer in the EMPA-REG OUTCOME trial. Diabetologia 60, 2534–2535 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, H. et al. SGLT2 inhibitors and risk of cancer in type 2 diabetes: a systematic review and meta-analysis of randomised controlled trials. Diabetologia 60, 1862–1872 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abrahami, D. et al. Sodium-glucose cotransporter 2 inhibitors and the short-term risk of bladder cancer: an international multisite cohort study. Diabetes Care 45, 2907–2917 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, W. S. & Lin, C. L. Patients with diabetes with and without sodium-glucose cotransporter-2 inhibitors use with incident cancer risk. J. Diabetes Complications 37, 108468 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, W. et al. SGLT2 inhibitor activates the STING/IRF3/IFN-β pathway and induces immune infiltration in osteosarcoma. Cell Death Dis. 13, 523 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. et al. SGLT2 inhibition restrains thyroid cancer growth via G1/S phase transition arrest and apoptosis mediated by DNA damage response signaling pathways. Cancer Cell Int. 22, 74 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, D. & Ma, P. Canagliflozin, characterized as a HDAC6 inhibitor, inhibits gastric cancer metastasis. Front. Oncol. 12, 1057455 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dutka, M. et al. SGLT-2 inhibitors in cancer treatment – mechanisms of action and emerging new perspectives. Cancers 14, 5811 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schietzel, S. et al. Impact of the SGLT2 inhibitor empagliflozin on urinary supersaturations in kidney stone formers (SWEETSTONE trial): protocol for a randomised, double-blind, placebo-controlled cross-over trial. BMJ Open 12, e059073 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balasubramanian, P. et al. Empagliflozin and decreased risk of nephrolithiasis: a potential new role for SGLT2 inhibition? J. Clin. Endocrinol. Metab. 107, e3003–e3007 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bailey, C. J. Uric acid and the cardio-renal effects of SGLT2 inhibitors. Diabetes Obes. Metab. 21, 1291–1298 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Banerjee, M., Pal, R., Maisnam, I., Chowdhury, S. & Mukhopadhyay, S. Serum uric acid lowering and effects of sodium-glucose cotransporter-2 inhibitors on gout: a meta-analysis and meta-regression of randomized controlled trials. Diabetes Obes. Metab. 25, 2697–2703 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Packer, M. Alleviation of anemia by SGLT2 inhibitors in patients with CKD: mechanisms and results of long-term placebo-controlled trials. Clin. J. Am. Soc. Nephrol., https://doi.org/10.2215/CJN.0000000000000362 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Singh, D. K., Winocour, P. & Farrington, K. Erythropoietic stress and anemia in diabetes mellitus. Nat. Rev. Endocrinol. 5, 204–210 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Okunrintemi, V., Mishriky, B. M., Powell, J. R. & Cummings, D. M. Sodium-glucose co-transporter-2 inhibitors and atrial fibrillation in the cardiovascular and renal outcome trials. Diabetes Obes. Metab. 23, 276–280 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Hara, D. V. & Jardine, M. J. SGLT2 inhibitors may prevent diabetes. Nat. Rev. Nephrol. 18, 203–204 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Kosiborod, M. N. et al. Dapagliflozin in patients with cardiometabolic risk factors hospitalised with COVID-19 (DARE-19): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol. 9, 586–594 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • The RECOVERY Collaborative Group. Empagliflozin in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet Diabetes Endocrinol. 11, 905–914 (2023).

    Article 

    Google Scholar
     

  • ESC Press Office. SGLT2 inhibitors not linked with improved survival in hospitalised COVID-19 patients: SGLT2 inhibitors in COVID-19 meta-analysis presented in a Hot Line session today at ESC Congress 2023 European Society of Cardiology https://www.escardio.org/The-ESC/Press-Office/Press-releases/SGLT2-inhibitors-not-linked-with-improved-survival-in-hospitalised-COVID-19-patients (2023).

  • Thiruvenkatarajan, V. et al. Peri-colonoscopy implications of sodium-glucose cotransporter-2 inhibitor therapy: a mini-review of available evidence. Can. J. Diabetes 47, 287–291 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Khunti, K. et al. Re-examining the widespread policy of stopping sodium-glucose cotransporter-2 inhibitors during acute illness: a perspective based on the updated evidence. Diabetes Obes. Metab. 24, 2071–2080 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Raven, L. M., Muir, C. A. & Greenfield, J. R. Sodium glucose cotransporter 2 inhibitor-induced ketoacidosis is unlikely in patients without diabetes. Med. J. Aust. 219, 293–294 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Hayes, A. G., Raven, L. M., Viardot, A., Kotlyar, E. & Greenfield, J. R. SGLT2 inhibitor-induced ketoacidosis in a patient without diabetes. Diabetes Care 47, e4–e5 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Duggan, A., Stewart, P. & Williams, D. Non-diabetic euglycaemic ketoacidosis secondary to SGLT2 inhibition. Heart Lung Circ. 32, S167–S168 (2023).

    Article 

    Google Scholar
     

  • Vukadinović, D. et al. Side effects and treatment initiation barriers of sodium–glucose cotransporter 2 inhibitors in heart failure: a systematic review and meta-analysis. Eur. J. Heart Fail. 24, 1625–1632 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Jardine, M. J. et al. Renal, cardiovascular, and safety outcomes of canagliflozin by baseline kidney function: a secondary analysis of the CREDENCE randomized trial. J. Am. Soc. Nephrol. 31, 1128–1139 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neuen, B. L., Jardine, M. J. & Perkovic, V. Sodium-glucose cotransporter 2 inhibition: which patient with chronic kidney disease should be treated in the future? Nephrol. Dial. Transpl. 35, i48–i55 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, C. X. et al. Comparative safety of different sodium-glucose transporter 2 inhibitors in patients with type 2 diabetes: a systematic review and network meta-analysis of randomized controlled trials. Front. Endocrinol. 14, 1238399 (2023).

    Article 

    Google Scholar
     

  • Kang, A. et al. P1013. Canagliflozin and risk of genital infections and urinary tract infections in people with diabetes mellitus and kidney disease – a post-hoc analysis of the CREDENCE trial. Nephrol. Dial. Transpl. 35, gfaa142 (2020).


    Google Scholar
     

  • Engelhardt, K., Ferguson, M. & Rosselli, J. L. Prevention and management of genital mycotic infections in the setting of sodium-glucose cotransporter 2 inhibitors. Ann. Pharmacother. 55, 543–548 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, J. et al. Effects of SGLT2 inhibitors on UTIs and genital infections in type 2 diabetes mellitus: a systematic review and meta-analysis. Sci. Rep. 7, 2824 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Butt, J. H. et al. Heart failure, peripheral artery disease, and dapagliflozin: a patient-level meta-analysis of DAPA-HF and DELIVER. Eur. Heart J. 44, 2170–2183 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fralick, M. et al. Fracture risk after initiation of use of canagliflozin: a cohort study. Ann. Intern. Med. 170, 155–163 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patil, T., Cook, M., Hobson, J., Kaur, A. & Lee, A. Evaluating the safety of sodium-glucose cotransporter-2 inhibitors in a nationwide Veterans Health Administration observational cohort study. Am. J. Cardiol. 201, 281–293 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McEwan, P. et al. Cost-effectiveness of dapagliflozin as a treatment for chronic kidney disease: a health-economic analysis of DAPA-CKD. Clin. J. Am. Soc. Nephrol. 17, 1730–1741 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Igarashi, A. et al. Cost-effectiveness analysis of initiating type 2 diabetes therapy with a sodium-glucose cotransporter 2 inhibitor versus conventional therapy in Japan. Diabetes Ther. 13, 1367–1381 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnston, R. et al. Canagliflozin, dapagliflozin and empagliflozin monotherapy for treating type 2 diabetes: systematic review and economic evaluation. Health Technol. Assess. 21, 1–218 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sabapathy, S. et al. Cost-effectiveness of canagliflozin versus sitagliptin when added to metformin and sulfonylurea in type 2 diabetes in Canada. J. Popul. Ther. Clin. Pharmacol. 23, e151–e168 (2016).

    PubMed 

    Google Scholar
     

  • Gourzoulidis, G. et al. Cost-effectiveness of empagliflozin for the treatment of patients with type 2 diabetes mellitus at increased cardiovascular risk in Greece. Clin. Drug Investig. 38, 417–426 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen, E., Coleman, C. I., Nair, S. & Weeda, E. R. Cost-utility of empagliflozin in patients with type 2 diabetes at high cardiovascular risk. J. Diabetes Complications 32, 210–215 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Mettam, S. R., Bajaj, H., Kansal, A. R. & Kandaswamy, P. Cost effectiveness of empagliflozin in patients with T2DM and high CV risk in Canada. Value Health 19, A674 (2016).

    Article 

    Google Scholar
     

  • Daacke, I., Kandaswamy, P., Tebboth, A., Kansal, A. & Reifsnider, O. Cost-effectiveness of empagliflozin (Jardiance) in the treatment of patients with type 2 diabetes mellitus (T2DM) in the UK based on EMPA-REG-OUTCOME data. Value Health 19, A673 (2016).

    Article 

    Google Scholar
     

  • Reifsnider, O. S. et al. Cost-effectiveness of empagliflozin in patients with diabetic kidney disease in the United States: findings based on the EMPA-REG OUTCOME trial. Am. J. Kidney Dis. 79, 796–806 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jorissen, W., Annemans, L., Louis, N., Nilsson, A. & Willis, M. Health economic modelling of diabetic kidney disease in patients with type 2 diabetes treated with canagliflozin in Belgium. Acta Clin. Belg. 77, 945–954 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Willis, M. et al. Cost-effectiveness of canagliflozin added to standard of care for treating diabetic kidney disease (DKD) in patients with type 2 diabetes mellitus (T2DM) in England: estimates using the CREDEM-DKD model. Diabetes Ther. 12, 313–328 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Tisdale, R. L. et al. Cost-effectiveness of dapagliflozin for non-diabetic chronic kidney disease. J. Gen. Intern. Med. 37, 3380–3387 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kodera, S. et al. Cost-effectiveness of dapagliflozin for chronic kidney disease in Japan. Circ. J. 86, 2021–2028 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vareesangthip, K., Deerochanawong, C., Thongsuk, D., Pojchaijongdee, N. & Permsuwan, U. Cost-utility analysis of dapagliflozin as an add-on to standard of care for patients with chronic kidney disease in Thailand. Adv. Ther. 39, 1279–1292 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lim, A. H., Abdul Rahim, N., Zhao, J., Cheung, S. Y. A. & Lin, Y. W. Cost effectiveness analyses of pharmacological treatments in heart failure. Front. Pharmacol. 13, 919974 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gil-Rojas, Y., Lasalvia, P. & García, Á. Cost-utility of dapagliflozin plus standard treatment compared to standard treatment for the management of heart failure with reduced ejection fraction in Colombia. Expert Rev. Pharmacoecon. Outcomes Res. 22, 655–663 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Isaza, N. et al. Cost-effectiveness of dapagliflozin for the treatment of heart failure with reduced ejection fraction. JAMA Netw. Open 4, e2114501 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krittayaphong, R. & Permsuwan, U. Cost-utility analysis of add-on dapagliflozin treatment in heart failure with reduced ejection fraction. Int. J. Cardiol. 322, 183–190 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • & Liao, C.-T. et al. Cost-effectiveness evaluation of add-on empagliflozin in patients with heart failure and a reduced ejection fraction from the healthcare system’s perspective in the Asia–Pacific Region. Front. Cardiovasc. Med. 8, 750381 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liao, C.-T. et al. Cost-effectiveness evaluation of add-on dapagliflozin for heart failure with reduced ejection fraction from perspective of healthcare systems in Asia–Pacific region. Cardiovasc. Diabetol. 20, 204 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohammadnezhad, G., Azadmehr, B., Mirheidari, M. & Yousefi, N. Cost-effectiveness analysis of dapagliflozin in the management of heart failure with reduced ejection fraction (HFrEF): a systematic review. Cost Eff. Resour. Alloc. 20, 62 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, B. N., Mital, S., Bugden, S. & Nguyen, H. V. Cost-effectiveness of dapagliflozin and empagliflozin for treatment of heart failure with reduced ejection fraction. Int. J. Cardiol. 376, 83–89 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Parizo, J. T. et al. Cost-effectiveness of dapagliflozin for treatment of patients with heart failure with reduced ejection fraction. JAMA Cardiol. 6, 926–935 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Reifsnider, O. S. et al. Cost-effectiveness of empagliflozin in the UK in an EMPA-REG OUTCOME subgroup with type 2 diabetes and heart failure. Esc. Heart Fail. 7, 3910–3918 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sang, H., Wan, Y., Ma, Z., Zhang, S. & Zhao, Q. Cost-effectiveness of empagliflozin for the treatment of heart failure with reduced ejection fraction in China. Front. Cardiovasc. Med. 9, 1022020 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cohen, L. P. et al. Cost-effectiveness of sodium-glucose cotransporter-2 inhibitors for the treatment of heart failure with preserved ejection fraction. JAMA Cardiol. 8, 419–428 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Global Health & Population Project on Access to Care for Cardiometabolic Diseases Expanding access to newer medicines for people with type 2 diabetes in low-income and middle-income countries: a cost-effectiveness and price target analysis. Lancet Diabetes Endocrinol. 9, 825–836 (2021).

    Article 

    Google Scholar
     

  • The George Institute. The wider benefits of SGLT2 inhibitors. Health TGIfG. https://www.georgeinstitute.org.au/our-impact/policy-and-recommendations/the-wider-benefits-of-sglt2-inhibitors 2021.

  • Mosenzon, O. et al. CAPTURE: a multinational, cross-sectional study of cardiovascular disease prevalence in adults with type 2 diabetes across 13 countries. Cardiovasc. Diabetol. 20, 154 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arnold, S. V. et al. Global use of SGLT2 inhibitors and GLP-1 receptor agonists in type 2 diabetes. Results from DISCOVER. BMC Endocr. Disord. 22, 111 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nargesi, A. A. et al. Contemporary national patterns of eligibility and use of novel cardioprotective antihyperglycemic agents in type 2 diabetes mellitus. J. Am. Heart Assoc. 10, e021084 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gay, H. C. et al. Comparison of sodium-glucose cotransporter-2 inhibitor and glucagon-like peptide-1 receptor agonist prescribing in patients with diabetes mellitus with and without cardiovascular disease. Am. J. Cardiol. 189, 121–130 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ofori-Asenso, R. et al. Poor adherence and persistence to sodium glucose co-transporter 2 inhibitors in real-world settings: evidence from a systematic review and meta-analysis. Diabetes Metab. Res. Rev. 37, e3350 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo, J. et al. Incidence and predictors of primary nonadherence to sodium glucose co-transporter 2 inhibitors and glucagon-like peptide 1 agonists in a large integrated healthcare system. J. Gen. Intern. Med. 37, 3562–3569 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vardeny, O. & Vaduganathan, M. Practical guide to prescribing sodium-glucose cotransporter 2 inhibitors for cardiologists. JACC: Heart Fail. 7, 169–172 (2019).

    PubMed 

    Google Scholar
     

  • Essien, U. R. et al. Association of prescription co-payment with adherence to glucagon-like peptide-1 receptor agonist and sodium-glucose cotransporter-2 inhibitor therapies in patients with heart failure and diabetes. JAMA Netw. Open 6, e2316290 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar