Search
Search
Close this search box.

Zyxin is important for the stability and function of podocytes, especially during mechanical stretch – Communications Biology

  • Global, regional, and national burden of chronic kidney disease, 1990-2017. a systematic analysis for the Global Burden of Disease Study 2017. Lancet (London, England) 395, 709–733 (2020).

    Article 

    Google Scholar
     

  • Saran, R. et al. US Renal Data System 2014 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am. J. Kidney Dis. 66, S1–305 (2015).

    Article 

    Google Scholar
     

  • Hill, N. R. et al. Global prevalence of chronic kidney disease – A systematic review and meta-analysis. PLoS ONE 11, e0158765 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kretzler, M., Koeppen-Hagemann, I. & Kriz, W. Podocyte damage is a critical step in the development of glomerulosclerosis in the uninephrectomised-desoxycorticosterone hypertensive rat. Vichows Archiv A Pathol. Anat. 425; https://doi.org/10.1007/bf00230355 (1994).

  • Kriz, W., Hosser, H., Hähnel, B., Gretz, N. & Provoost, A. P. From segmental glomerulosclerosis to total nephron degeneration and interstitial fibrosis: A histopathological study in rat models and human glomerulopathies. Nephrol. Dialysis Transp. 13, 2781–2798 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Simons, J. L. et al. Pathogenesis of glomerular injury in the fawn-hooded rat: Early glomerular capillary hypertension predicts glomerular sclerosis. J. Am. Soc. Nephrol. 3, 1775–1782 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van Dokkum, R. P., Sun, C. W., Provoost, A. P., Jacob, H. J. & Roman, R. J. Altered renal hemodynamics and impaired myogenic responses in the fawn-hooded rat. Ame. J. Physiol. 276, R855–R863 (1999).


    Google Scholar
     

  • Friedrich, C., Endlich, N., Kriz, W. & Endlich, K. Podocytes are sensitive to fluid shear stress in vitro. Am. J. Physiol. Renal Physiol. 291, F856–F865 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Endlich, N. et al. Podocytes respond to mechanical stress in vitro. J. Am. Soc. Nephrol. 12, 413–422 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Endlich, N. & Endlich, K. The challenge and response of podocytes to glomerular hypertension. Seminars Nephrol. 32, 327–341 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Endlich, K., Kliewe, F. & Endlich, N. Stressed podocytes-mechanical forces, sensors, signaling and response. Pflugers Archiv: Eur. J. Physiol. 469, 937–949 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Martinac, B. Mechanosensitive ion channels: molecules of mechanotransduction. J. Cell Sci. 117, 2449–2460 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nourse, J. L. & Pathak, M. M. How cells channel their stress: Interplay between Piezo1 and the cytoskeleton. Seminars Cell Dev. Biol. 71, 3–12 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Bershadsky, A. D., Balaban, N. Q. & Geiger, B. Adhesion-dependent cell mechanosensitivity. Ann. Rev. Cell Dev. Biol. 19, 677–695 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Ingber, D. E. Tensegrity II. How structural networks influence cellular information processing networks. J. Cell Sci. 116, 1397–1408 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Endlich, N. & Endlich, K. Stretch, tension and adhesion – adaptive mechanisms of the actin cytoskeleton in podocytes. Eur. J. Cell Biol. 85, 229–234 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Naruse, K., Yamada, T., Sai, X. R., Hamaguchi, M. & Sokabe, M. Pp125FAK is required for stretch dependent morphological response of endothelial cells. Oncogene 17, 455–463 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, K. D. et al. Mechanotransduction in response to shear stress. Roles of receptor tyrosine kinases, integrins, and Shc. J. Biol. Chem. 274, 18393–18400 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Helmke, B. P. & Davies, P. F. The cytoskeleton under external fluid mechanical forces: hemodynamic forces acting on the endothelium. Ann. Biomed. Eng. 30, 284–296 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Katsumi, A., Orr, A. W., Tzima, E. & Schwartz, M. A. Integrins in mechanotransduction. J. Biol. Chem. 279, 12001–12004 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuo, J.-C. Focal adhesions function as a mechanosensor. Progr. Mol. Biol. Transl. Sci. 126, 55–73 (2014).

    Article 

    Google Scholar
     

  • Parsons, J. T., Horwitz, A. R. & Schwartz, M. A. Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat. Rev. Mol. Cell Biol. 11, 633–643 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, Z., Guo, S. S. & Fässler, R. Integrin-mediated mechanotransduction. J. Cell Biol. 215, 445–456 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wozniak, M. A., Modzelewska, K., Kwong, L. & Keely, P. J. Focal adhesion regulation of cell behavior. Biochimica et Biophysica Acta 1692, 103–119 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hirata, H., Tatsumi, H. & Sokabe, M. Mechanical forces facilitate actin polymerization at focal adhesions in a zyxin-dependent manner. J. Cell Sci. 121, 2795–2804 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoshigi, M., Hoffman, L. M., Jensen, C. C., Yost, H. J. & Beckerle, M. C. Mechanical force mobilizes zyxin from focal adhesions to actin filaments and regulates cytoskeletal reinforcement. J. Cell Biol. 171, 209–215 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y.-X., Wang, D.-Y., Guo, Y.-C. & Guo, J. Zyxin: a mechanotransductor to regulate gene expression. Eur. Rev. Med. Pharmacol. Sci. 23, 413–425 (2019).

    PubMed 

    Google Scholar
     

  • Nix, D. A. & Beckerle, M. C. Nuclear-cytoplasmic shuttling of the focal contact protein, zyxin: a potential mechanism for communication between sites of cell adhesion and the nucleus. J. Cell Biol. 138, 1139–1147 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mori, M. et al. Zyxin mediates actin fiber reorganization in epithelial-mesenchymal transition and contributes to endocardial morphogenesis. Mol. Biol. Cell 20, 3115–3124 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fradelizi, J. et al. ActA and human zyxin harbour Arp2/3-independent actin-polymerization activity. Nat. Cell Biol. 3, 699–707 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beckerle, M. C. Zyxin: Zinc fingers at sites of cell adhesion. BioEssays 19, 949–957 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith, M. A. et al. A zyxin-mediated mechanism for actin stress fiber maintenance and repair. Dev. Cell 19, 365–376 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoffman, L. M., Jensen, C. C., Chaturvedi, A., Yoshigi, M. & Beckerle, M. C. Stretch-induced actin remodeling requires targeting of zyxin to stress fibers and recruitment of actin regulators. Mol. Biol. Cell 23, 1846–1859 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drees, B. E., Andrews, K. M. & Beckerle, M. C. Molecular dissection of zyxin function reveals its involvement in cell motility. J. Cell Biol. 147, 1549–1560 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zamir, E. & Geiger, B. Components of cell-matrix adhesions. J. Cell Sci. 114, 3577–3579 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, B. & Trueb, B. Analysis of the alpha-actinin/zyxin interaction. J. Biol. Chem. 276, 33328–33335 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reinhard, M. et al. An alpha-actinin binding site of zyxin is essential for subcellular zyxin localization and alpha-actinin recruitment. J. Biol. Chem. 274, 13410–13418 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Steele, A. N., Sumida, G. M. & Yamada, S. Tandem zyxin LIM sequences do not enhance force sensitive accumulation. Biochem. Biophys. Res. Commun. 422, 653–657 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, B., Zhuang, L. & Trueb, B. Zyxin interacts with the SH3 domains of the cytoskeletal proteins LIM-nebulette and Lasp-1. J. Biol. Chem. 279, 20401–20410 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yi, J. et al. Members of the Zyxin family of LIM proteins interact with members of the p130Cas family of signal transducers. J. Biol. Chem. 277, 9580–9589 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith, M. A., Hoffman, L. M. & Beckerle, M. C. LIM proteins in actin cytoskeleton mechanoresponse. Trends Cell Biol. 24, 575–583 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uemura, A., Nguyen, T.-N., Steele, A. N. & Yamada, S. The LIM domain of zyxin is sufficient for force-induced accumulation of zyxin during cell migration. Biophys. J. 101, 1069–1075 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, M. A. et al. LIM domains target actin regulators paxillin and zyxin to sites of stress fiber strain. PLoS ONE 8, e69378 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Hasani, J. et al. Zyxin protects from hypertension-induced cardiac dysfunction. Cell. Mol. Life Sci. 79, 93 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ransick, A. et al. Single-cell profiling reveals sex, lineage, and regional diversity in the mouse kidney. Dev. Cell 51, 399–413.e7 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kliewe, F. et al. Studying the role of fascin-1 in mechanically stressed podocytes. Sci. Rep. 7, 9916 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krämer, A., Green, J., Pollard, J. & Tugendreich, S. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics (Oxford, England) 30, 523–530 (2014).

    PubMed 

    Google Scholar
     

  • Siegerist, F. et al. Structured illumination microscopy and automatized image processing as a rapid diagnostic tool for podocyte effacement. Sci. Rep. 7, 11473 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng, D., DuMontier, C. & Pollak, M. R. Mechanical challenges and cytoskeletal impairments in focal segmental glomerulosclerosis. Am. J. Physiol.-Renal Physiol. 314, F921–F925 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naik, A. S. et al. Podocyte stress and detachment measured in urine are related to mean arterial pressure in healthy humans. Kidney Int. 98, 699–707 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao, M. et al. The mechanical response of talin. Nat. Commun. 7, 11966 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, G. et al. Zyxin-involved actin regulation is essential in the maintenance of vinculin focal adhesion and chondrocyte differentiation status. Cell Proliferation 52, e12532 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Ghosh, S. et al. Loss of the mechanotransducer zyxin promotes a synthetic phenotype of vascular smooth muscle cells. J. Am. Heart Assoc. 4, e001712 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reinhard, M., Jouvenal, K., Tripier, D. & Walter, U. Identification, purification, and characterization of a zyxin-related protein that binds the focal adhesion and microfilament protein VASP (vasodilator-stimulated phosphoprotein). Proc. Natl. Acad. Sci. USA. 92, 7956–7960 (1995).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reinhard, M., Rüdiger, M., Jockusch, B. M. & Walter, U. VASP interaction with vinculin: a recurring theme of interactions with proline-rich motifs. FEBS Lett. 399, 103–107 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoffman, L. M. et al. Genetic ablation of zyxin causes Mena/VASP mislocalization, increased motility, and deficits in actin remodeling. J. Cell Biol. 172, 771–782 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holt, M. R., Critchley, D. R. & Brindle, N. P. The focal adhesion phosphoprotein, VASP. Int. J. Biochem. Cell Biol. 30, 307–311 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Samarin, S. et al. How VASP enhances actin-based motility. J. Cell Biol. 163, 131–142 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mise, N. et al. Zyxin is a transforming growth factor-β (TGF-β)/Smad3 target gene that regulates lung cancer cell motility via integrin α5β1. J. Biol. Chem. 287, 31393–31405 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rottner, K., Krause, M., Gimona, M., Small, J. V. & Wehland, J. Zyxin is not colocalized with vasodilator-stimulated phosphoprotein (VASP) at lamellipodial tips and exhibits different dynamics to vinculin, paxillin, and VASP in focal adhesions. Mol. Biol. Cell 12, 3103–3113 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, T. N., Uemura, A., Shih, W. & Yamada, S. Zyxin-mediated actin assembly is required for efficient wound closure. J. Biol. Chem. 285, 35439–35445 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheah, J. S. et al. Spatial proximity of proteins surrounding zyxin under force-bearing conditions. Mol. Biol. Cell 32, 1221–1228 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bos, J. L., Rehmann, H. & Wittinghofer, A. GEFs and GAPs: Critical elements in the control of small G proteins. Cell 129, 865–877 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guan, X., Guan, X., Dong, C. & Jiao, Z. Rho GTPases and related signaling complexes in cell migration and invasion. Exp. Cell Res. 388, 111824 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ridley, A. J. Rho GTPase signalling in cell migration. Curr. Opin. Cell Biol. 36, 103–112 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, Z., Huang, S., Li, Z. & Meininger, G. A. Zyxin is involved in regulation of mechanotransduction in arteriole smooth muscle cells. Front. Physiol. 3, 472 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yip, A. K. et al. Zyxin is involved in fibroblast rigidity sensing and durotaxis. Front. Cell Dev. Biol. 9, 735298 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elkhatib, N. et al. Fascin plays a role in stress fiber organization and focal adhesion disassembly. Curr. Biol. 24, 1492–1499 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jayo, A. & Parsons, M. Fascin: a key regulator of cytoskeletal dynamics. Int. J. Biochem. Cell Biol. 42, 1614–1617 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vignjevic, D. et al. Role of fascin in filopodial protrusion. J. Cell Biol. 174, 863–875 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holstein-Rathlou, N. H., Wagner, A. J. & Marsh, D. J. Tubuloglomerular feedback dynamics and renal blood flow autoregulation in rats. Am. J. Physiol.-Renal Physiol. 260, F53–F68 (1991).

    Article 
    CAS 

    Google Scholar
     

  • Schmidt, U., Weigert, M., Broaddus, C. & Myers, G. Cell Detection with Star-Convex Polygons. In Medical Image Computing and Computer Assisted Intervention – MICCAI 2018, edited by A. F. Frangi, J. A. Schnabel, C. Davatzikos, C. Alberola-López & G. Fichtinger (Springer International Publishing, Cham), Vol. 11071, pp. 265–273. (2018).

  • Hoffman, L. M. et al. Targeted disruption of the murine zyxin gene. Mol. Cellular Biol. 23, 70–79 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Schordan, S. et al. OPN deficiency results in severe glomerulosclerosis in uninephrectomized mice. Am. J. Physiol.-Renal Physiol. 304, F1458–F1470 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rueden, C. T. et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinf. 18, 529 (2017).

    Article 

    Google Scholar
     

  • Suomi, T. & Elo, L. L. Enhanced differential expression statistics for data-independent acquisition proteomics. Sci. Rep. 7, 5869 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, T. et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (Cambridge (Mass.)) 2, 100141 (2021).

    CAS 

    Google Scholar
     

  • Artelt, N. et al. The Role of Palladin in Podocytes. J. Am. Soc. Nephrol. 29, 1662–1678 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cohen, C. D., Frach, K., Schlöndorff, D. & Kretzler, M. Quantitative gene expression analysis in renal biopsies: a novel protocol for a high-throughput multicenter application. Kidney Int. 61, 133–140 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martini, S. et al. Integrative biology identifies shared transcriptional networks in CKD. J. Am. Soc. Nephrol. 25, 2559–2572 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cohen, C. D. et al. Comparative promoter analysis allows de novo identification of specialized cell junction-associated proteins. Proc. Natl. Acad. Sci. USA. 103, 5682–5687 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tusher, V. G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA. 98, 5116–5121 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kliewe, F. et al. Fibronectin is up-regulated in podocytes by mechanical stress. FASEB J. 33, 14450–14460 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Siegerist, F. et al. ScoMorphoFISH: A deep learning enabled toolbox for single-cell single-mRNA quantification and correlative (ultra-)morphometry. J. Cellular Mol. Med. 26, 3513–3526 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Tinevez, J.-Y. et al. TrackMate: An open and extensible platform for single-particle tracking. Methods (San Diego, Calif.) 115, 80–90 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ershov, D. et al. TrackMate 7: integrating state-of-the-art segmentation algorithms into tracking pipelines. Nat. Methods 19, 829–832 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ju, W. et al. Defining cell-type specificity at the transcriptional level in human disease. Genome Res. 23, 1862–1873 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hodgin, J. B. et al. A molecular profile of focal segmental glomerulosclerosis from formalin-fixed, paraffin-embedded tissue. Am. J. Pathol. 177, 1674–1686 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neusser, M. A. et al. Human nephrosclerosis triggers a hypoxia-related glomerulopathy. Am. J. Pathol. 176, 594–607 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar