Search
Search
Close this search box.

Understanding the heterogeneity and dysfunction of HDL in chronic kidney disease: insights from recent reviews – BMC Nephrology

  • Inker LA, Astor BC, Fox CH, Isakova T, Lash JP, Peralta CA, et al. KDOQI us commentary on the 2012 KDIGO clinical practice guideline for the evaluation and management of CKD. Am J Kidney Dis 2014;63:713–35. https://doi.org/10.1053/j.ajkd.2014.01.416.

    Article 
    PubMed 

    Google Scholar
     

  • GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of Disease Study 2019. Lancet. 2020;396:1223–49. https://doi.org/10.1016/S0140-6736(20)30752-2.

    Article 

    Google Scholar
     

  • Thomas MC, Cooper ME, Zimmet P. Changing epidemiology of type 2 diabetes mellitus and associated chronic kidney disease. Nat Rev Nephrol. 2016;12(2):73–81. https://doi.org/10.1038/nrneph.2015.173.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Navaneethan SD, Zoungas S, Caramori ML, Chan JCN, Heerspink HJL, Hurst C, et al. Diabetes management in chronic kidney disease: Synopsis of the KDIGO 2022 clinical practice Guideline Update. Ann Intern Med. 2023;176(3):381–7. https://doi.org/10.7326/M22-2904.

    Article 
    PubMed 

    Google Scholar
     

  • Ma I, Guo M, Muruve D, Benediktsson H, Naugler C. Sociodemographic associations with abnormal estimated glomerular filtration rate (eGFR) in a large Canadian city: a cross-sectional observation study. BMC Nephrol. 2018;19(1):198. https://doi.org/10.1186/s12882-018-0991-5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roehm B, Weiner DE. Blood pressure targets and kidney and cardiovascular disease: same data but discordant guidelines. Curr Opin Nephrol Hypertens. 2019;28(3):245–50. https://doi.org/10.1097/MNH.0000000000000492.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zewinger S, Kleber ME, Rohrer L, Lehmann M, Triem S, Jennings RT, et al. Symmetric dimethylarginine, high-density lipoproteins and cardiovascular disease. Eur Heart J. 2017;38(20):1597–607. https://doi.org/10.1093/eurheartj/ehx118.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Poole AP, Finnis ME, Anstey J, Bellomo R, Bihari S, Biradar V, et al. The effect of a liberal approach to glucose control in critically ill patients with type 2 diabetes: a multicenter, parallel-group, open-label randomized clinical trial. Am J Respir Crit Care Med. 2022;206(7):874–82. https://doi.org/10.1164/rccm.202202-0329OC.

    Article 
    PubMed 

    Google Scholar
     

  • Brown JC, Gerhardt TE, Kwon E. Risk factors for coronary artery disease. 2023. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023. PMID: 32119297.

  • Ter Braake AD, Shanahan CM, de Baaij JHF. Magnesium counteracts vascular calcification: Passive interference or active modulation? Arterioscler Thromb Vasc Biol. 2017;37(8):1431–45. https://doi.org/10.1161/ATVBAHA.117.309182.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhan Y, Zhang R, Li G. Effect of magnesium on vascular calcification in chronic kidney disease patients: a systematic review and meta-analysis. Ren Fail. 2023;45(1):2182603. https://doi.org/10.1080/0886022X.2023.2182603.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brandenburg VM, Reinartz S, Kaesler N, Krüger T, Dirrichs T, Kramann R, et al. Slower progress of aortic valve calcification with vitamin K supplementation: Results from a prospective interventional proof-of-concept study. Circulation. 2017;135(21):2081–2083. https://doi.org/10.1161/CIRCULATIONAHA.116.027011. Erratum in: Circulation. 2020;141(3):e54.

  • Ridker PM, MacFadyen JG, Glynn RJ, Koenig W, Libby P, Everett BM, et al. Inhibition of interleukin-1β by canakinumab and cardiovascular outcomes in patients with chronic kidney disease. J Am Coll Cardiol. 2018;71(21):2405–14. https://doi.org/10.1016/j.jacc.2018.03.490.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Calabresi L, Simonelli S, Conca P, Busnach G, Cabibbe M, Gesualdo L, et al. Acquired lecithin: cholesterol acyltransferase deficiency as a major factor in lowering plasma HDL levels in chronic kidney disease. J Intern Med. 2015;277(5):552–61. https://doi.org/10.1111/joim.12290. Epub 2014 Aug 1. PMID: 25039266.

  • Kontush A, Chapman MJ. Functionally defective high-density lipoprotein: a new therapeutic target at the crossroads of dyslipidemia, inflammation, and atherosclerosis. Pharmacol Rev. 2006;58(3):342–74. https://doi.org/10.1124/pr.58.3.1. PMID: 16968945.

  • Rader DJ, Tall AR. The not-so-simple HDL story: Is it time to revise the HDL cholesterol hypothesis? Nat Med. 2012;18(9):1344–6. https://doi.org/10.1038/nm.2937. PMID: 22961164.

  • Nicholls SJ, Nelson AJ. HDL and cardiovascular disease. Pathology. 2019;51(2):142–147. https://doi.org/10.1016/j.pathol.2018.10.017. Epub 2019 Jan 3. PMID: 30612759.

  • Havel RJ, Eder HA, Bragdon JH. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest. 1955;34(9):1345–53. https://doi.org/10.1172/JCI103182. PMID: 13252080; PMCID: PMC438705.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Asztalos BF, Schaefer EJ. High-density lipoprotein subpopulations in pathologic conditions. Am J Cardiol. 2003;91(7A):12E–17E. https://doi.org/10.1016/s0002-9149(02)03383-0. PMID: 12679198.

  • Forte T, Norum KR, Glomset JA, Nichols AV. Plasma lipoproteins in familial lecithin: cholesterol acyltransferase deficiency: structure of low and high density lipoproteins as revealed by elctron microscopy. J Clin Invest. 1971;50(5):1141–8. https://doi.org/10.1172/JCI106586. PMID: 5552411; PMCID: PMC292037.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tall AR, Small DM, Shipley GG, Lees RS. Apoprotein stability and lipid-protein interactions in human plasma high density lipoproteins. Proc Natl Acad Sci U S A. 1975;72(12):4940–2. https://doi.org/10.1073/pnas.72.12.4940. PMID: 174082; PMCID: PMC388849.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Segrest JP. Amphipathic helixes and plasma lipoproteins: thermodynamic and geometric considerations. Chem Phys Lipids. 1977;18(1):7–22. https://doi.org/10.1016/0009-3084(77)90023-8. PMID: 832339.

  • Segrest JP, Feldmann RJ. Amphipathic helixes and plasma lipoproteins: a computer study. Biopolymers. 1977;16(9):2053–65. https://doi.org/10.1002/bip.1977.360160916. PMID: 901926.

  • Kane JP, Malloy MJ. Prebeta-1 HDL and coronary heart disease. Curr Opin Lipidol. 2012;23(4):367–71. https://doi.org/10.1097/MOL.0b013e328353eef1. PMID: 22517613.

  • Ishida BY, Frolich J, Fielding CJ. Prebeta-migrating high density lipoprotein: quantitation in normal and hyperlipidemic plasma by solid phase radioimmunoassay following electrophoretic transfer. J Lipid Res. 1987;28(7):778–86. PMID: 3114402.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Castro GR, Fielding CJ. Early incorporation of cell-derived cholesterol into pre-beta-migrating high-density lipoprotein. Biochemistry. 1988;27(1):25–9. https://doi.org/10.1021/bi00401a005. PMID: 3126809.

  • Hara H, Yokoyama S. Interaction of free apolipoproteins with macrophages. Formation of high density lipoprotein-like lipoproteins and reduction of cellular cholesterol. J Biol Chem. 1991;266(5):3080–6. PMID: 1993681.

  • Bodzioch M, Orsó E, Klucken J, Langmann T, Böttcher A, Diederich W, et al. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat Genet. 1999;22(4):347–51. https://doi.org/10.1038/11914. PMID: 10431237.

  • Brooks-Wilson A, Marcil M, Clee SM, Zhang LH, Roomp K, van Dam M, et al. Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat Genet. 1999;22(4):336–45. https://doi.org/10.1038/11905. PMID: 10431236.

  • Rust S, Rosier M, Funke H, Real J, Amoura Z, Piette JC, et al. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat Genet. 1999;22(4):352–5. https://doi.org/10.1038/11921. PMID: 10431238.

  • Nagata KO, Nakada C, Kasai RS, Kusumi A, Ueda K. ABCA1 dimer-monomer interconversion during HDL generation revealed by single-molecule imaging. Proc Natl Acad Sci U S A. 2013;110(13):5034–9. https://doi.org/10.1073/pnas.1220703110. Epub 2013 Mar 11. PMID: 23479619; PMCID: PMC3612634.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qian H, Zhao X, Cao P, Lei J, Yan N, Gong X. Structure of the human lipid exporter ABCA1. Cell. 2017;169(7):1228–39.e10. Epub 2017 Jun 8. PMID: 28602350.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Francone OL, Gurakar A, Fielding C. Distribution and functions of lecithin: cholesterol acyltransferase and cholesteryl ester transfer protein in plasma lipoproteins. Evidence for a functional unit containing these activities together with apolipoproteins A-I and D that catalyzes the esterification and transfer of cell-derived cholesterol. J Biol Chem. 1989;264(12):7066–72. PMID: 2496125.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rothblat GH, Phillips MC. High-density lipoprotein heterogeneity and function in reverse cholesterol transport. Curr Opin Lipidol. 2010;21(3):229–38. https://doi.org/10.1097/mol.0b013e328338472d. PMID: 20480549; PMCID: PMC3215082.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ong KL, Cochran BJ, Manandhar B, Thomas S, Rye KA. HDL maturation and remodelling. Biochim Biophys Acta Mol Cell Biol Lipids. 2022;1867(4):159119. https://doi.org/10.1016/j.bbalip.2022.159119. Epub 2022 Feb 2. PMID: 35121104.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Raman P, Khanal S. Leptin in atherosclerosis: Focus on macrophages, endothelial and smooth muscle cells. Int J Mol Sci. 2021;22(11):5446. https://doi.org/10.3390/ijms22115446. PMID: 34064112; PMCID: PMC8196747.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Atkinson D, Small DM. Recombinant lipoproteins: implications for structure and assembly of native lipoproteins. Annu Rev Biophys Biophys Chem. 1986;15:403–56. https://doi.org/10.1146/annurev.bb.15.060186.002155. PMID: 3521660.

  • Brouillette CG, Jones JL, Ng TC, Kercret H, Chung BH, Segrest JP. Structural studies of apolipoprotein A-I/phosphatidylcholine recombinants by high-field proton NMR, nondenaturing gradient gel electrophoresis, and electron microscopy. Biochemistry. 1984;23(2):359–67. https://doi.org/10.1021/bi00297a027. PMID: 6421314.

  • Deng S, Xu Y, Zheng L. HDL Structure. Adv Exp Med Biol. 2022;1377:1–11. https://doi.org/10.1007/978-981-19-1592-5_1. PMID: 35575917.

  • Kontush A, Lindahl M, Lhomme M, Calabresi L, Chapman MJ, Davidson WS. Structure of HDL: particle subclasses and molecular components. Handb Exp Pharmacol. 2015;224:3–51. https://doi.org/10.1007/978-3-319-09665-0_1. PMID: 25522985.

  • Jones MK, Gu F, Catte A, Li L, Segrest JP. Sticky and promiscuous, the Yin and Yang of apolipoprotein A-I termini in discoidal high-density lipoproteins: a combined computational-experimental approach. Biochemistry. 2011;50(12):2249–63. https://doi.org/10.1021/bi101301g. Epub 2011 Mar 4. PMID: 21329368; PMCID: PMC3119339.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He Y, Greene DJ, Kinter M, Morton RE. Control of cholesteryl ester transfer protein activity by sequestration of lipid transfer inhibitor protein in an inactive complex. J Lipid Res. 2008;49(7):1529–37. https://doi.org/10.1194/jlr.M800087-JLR200. Epub 2008 Mar 27. PMID: 18369235; PMCID: PMC2431105.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rye KA, Wee K, Curtiss LK, Bonnet DJ, Barter PJ. Apolipoprotein A-II inhibits high density lipoprotein remodeling and lipid-poor apolipoprotein A-I formation. J Biol Chem. 2003;278(25):22530–6. https://doi.org/10.1074/jbc.M213250200. Epub 2003 Apr 10. PMID: 12690114.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Strickland MR, Rau MJ, Summers B, Basore K, Wulf J 2nd, Jiang H, et al. Apolipoprotein E secreted by astrocytes forms antiparallel dimers in discoidal lipoproteins. Neuron. 2024;112(7):1100–e11095. Epub 2024 Jan 23. PMID: 38266643; PMCID: PMC10994765.

  • Hatters DM, Peters-Libeu CA, Weisgraber KH. Apolipoprotein E structure: insights into function. Trends Biochem Sci. 2006;31(8):445–54. https://doi.org/10.1016/j.tibs.2006.06.008. Epub 2006 Jul 3. PMID: 16820298.

  • Huang Y, Mahley RW, Apolipoprotein E, structure and function in lipid metabolism, neurobiology, and Alzheimer’s diseases. Neurobiol Dis. 2014;72 Pt A:3–12. https://doi.org/10.1016/j.nbd.2014.08.025. Epub 2014 Aug 27. PMID: 25173806; PMCID: PMC4253862.

  • Tudorache IF, Trusca VG, Gafencu AV, Apolipoprotein E, -. A multifunctional protein with implications in various pathologies as a result of its structural features. Comput Struct Biotechnol J. 2017;15:359–65. https://doi.org/10.1016/j.csbj.2017.05.003. PMID: 28660014; PMCID: PMC5476973.

  • Zhang M, Lei D, Peng B, Yang M, Zhang L, Charles MA, et al. Assessing the mechanisms of cholesteryl ester transfer protein inhibitors. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(12):1606–17. Epub 2017 Sep 12. PMID: 28911944; PMCID: PMC6239860.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang L, Yan F, Zhang S, Lei D, Charles MA, Cavigiolio G, et al. Structural basis of transfer between lipoproteins by cholesteryl ester transfer protein. Nat Chem Biol. 2012;8(4):342–9. https://doi.org/10.1038/nchembio.796. PMID: 22344176; PMCID: PMC3792710.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saeedi R, Li M, Frohlich J. A review on lecithin:cholesterol acyltransferase deficiency. Clin Biochem. 2015;48(7–8):472–5. https://doi.org/10.1016/j.clinbiochem.2014.08.014. Epub 2014 Aug 27. PMID: 25172171.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Manthei KA, Patra D, Wilson CJ, Fawaz MV, Piersimoni L, Shenkar JC, et al. Structural analysis of lecithin:cholesterol acyltransferase bound to high density lipoprotein particles. Commun Biol. 2020;3(1):28. https://doi.org/10.1038/s42003-019-0749-z. PMID: 31942029; PMCID: PMC6962161.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piper DE, Romanow WG, Gunawardane RN, Fordstrom P, Masterman S, Pan O, et al. The high-resolution crystal structure of human LCAT. J Lipid Res. 2015;56(9):1711–9. https://doi.org/10.1194/jlr.M059873. Epub 2015 Jul 20. PMID: 26195816; PMCID: PMC4548775.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gunawardane RN, Fordstrom P, Piper DE, Masterman S, Siu S, Liu D, et al. Agonistic Human Antibodies Binding to lecithin-cholesterol acyltransferase modulate high density lipoprotein metabolism. J Biol Chem. 2016;291(6):2799–811. https://doi.org/10.1074/jbc.M115.672790. Epub 2015 Dec 7. PMID: 26644477; PMCID: PMC4742745.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Manthei KA, Ahn J, Glukhova A, Yuan W, Larkin C, Manett TD, et al. A retractable lid in lecithin:cholesterol acyltransferase provides a structural mechanism for activation by apolipoprotein A-I. J Biol Chem. 2017;292(49):20313–27. https://doi.org/10.1074/jbc.M117.802736. Epub 2017 Oct 13. PMID: 29030428; PMCID: PMC5724016.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hine D, Mackness B, Mackness M. Coincubation of PON1, APO A1, and LCAT increases the time HDL is able to prevent LDL oxidation. IUBMB Life. 2012;64(2):157–61. https://doi.org/10.1002/iub.588. Epub 2011 Dec 20. PMID: 22184096.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kappelle PJ, de Boer JF, Perton FG, Annema W, de Vries R, Dullaart RP, et al. Increased LCAT activity and hyperglycaemia decrease the antioxidative functionality of HDL. Eur J Clin Invest. 2012;42(5):487–95. https://doi.org/10.1111/j.1365-2362.2011.02604.x. Epub 2011 Sep 28. PMID: 21955281.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dou X, Zhou Z, Ren R, Xu M. Apigenin, flavonoid component isolated from Gentiana veitchiorum flower suppresses the oxidative stress through LDLR-LCAT signaling pathway. Biomed Pharmacother. 2020;128:110298. https://doi.org/10.1016/j.biopha.2020.110298. Epub 2020 Jun 3. PMID: 32504920.

  • Mackness MI, Durrington PN. HDL, its enzymes and its potential to influence lipid peroxidation. Atherosclerosis. 1995;115(2):243–53. https://doi.org/10.1016/0021-9150(94)05524-m. PMID: 7661883.

  • Mackness M, Mackness B. Targeting paraoxonase-1 in atherosclerosis. Expert Opin Ther Targets. 2013;17(7):829–37. https://doi.org/10.1517/14728222.2013.790367. Epub 2013 Apr 10. PMID: 23573876.

  • Kotur-Stevuljević J, Vekić J, Stefanović A, Zeljković A, Ninić A, Ivanišević J, et al. Paraoxonase 1 and atherosclerosis-related diseases. BioFactors. 2020;46(2):193–205. Epub 2019 Aug 10. PMID: 31400246.

    Article 
    PubMed 

    Google Scholar
     

  • Gaidukov L, Rosenblat M, Aviram M, Tawfik DS. The 192R/Q polymorphs of serum paraoxonase PON1 differ in HDL binding, lipolactonase stimulation, and cholesterol efflux. J Lipid Res. 2006;47(11):2492–502. https://doi.org/10.1194/jlr.M600297-JLR200. Epub 2006 Aug 16. PMID: 16914770.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gaidukov L, Viji RI, Yacobson S, Rosenblat M, Aviram M, Tawfik DS. ApoE induces serum paraoxonase PON1 activity and stability similar to ApoA-I. Biochemistry. 2010;49(3):532–8. https://doi.org/10.1021/bi9013227. PMID: 20025294.

  • Rosenblat M, Gaidukov L, Khersonsky O, Vaya J, Oren R, Tawfik DS, et al. The catalytic histidine dyad of high density lipoprotein-associated serum paraoxonase-1 (PON1) is essential for PON1-mediated inhibition of low density lipoprotein oxidation and stimulation of macrophage cholesterol efflux. J Biol Chem. 2006;281(11):7657–65. https://doi.org/10.1074/jbc.M512595200. Epub 2006 Jan 10. PMID: 16407304.

  • Lin J, Kakkar V, Lu X. Impact of MCP-1 in atherosclerosis. Curr Pharm Des. 2014;20(28):4580–8. https://doi.org/10.2174/1381612820666140522115801. PMID: 24862889.

  • Mackness B, Hine D, Liu Y, Mastorikou M, Mackness M. Paraoxonase-1 inhibits oxidised LDL-induced MCP-1 production by endothelial cells. Biochem Biophys Res Commun. 2004;318(3):680–3. https://doi.org/10.1016/j.bbrc.2004.04.056. PMID: 15144891.

  • Mackness M, Mackness B. Human paraoxonase-1 (PON1): gene structure and expression, promiscuous activities and multiple physiological roles. Gene. 2015;567(1):12–21. https://doi.org/10.1016/j.gene.2015.04.088. Epub 2015 May 9. PMID: 25965560; PMCID: PMC4458450.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aviram M, Vaya J. Paraoxonase 1 activities, regulation, and interactions with atherosclerotic lesion. Curr Opin Lipidol. 2013;24(4):339–44. https://doi.org/10.1097/MOL.0b013e32835ffcfd. PMID: 23508039.

  • Costa LG, Giordano G, Furlong CE. Pharmacological and dietary modulators of paraoxonase 1 (PON1) activity and expression: the hunt goes on. Biochem Pharmacol. 2011;81(3):337–44. https://doi.org/10.1016/j.bcp.2010.11.008. Epub 2010 Nov 18. PMID: 21093416; PMCID: PMC3077125.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • García-Heredia A, Marsillach J, Rull A, Triguero I, Fort I, Mackness B, et al. Paraoxonase-1 inhibits oxidized low-density lipoprotein-induced metabolic alterations and apoptosis in endothelial cells: a nondirected metabolomic study. Mediators Inflamm. 2013;2013:156053. https://doi.org/10.1155/2013/156053. Epub 2013 May 22. PMID: 23766557; PMCID: PMC3674710.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tward A, Xia YR, Wang XP, Shi YS, Park C, Castellani LW, Lusis AJ, Shih DM. Decreased atherosclerotic lesion formation in human serum paraoxonase transgenic mice. Circulation. 2002;106(4):484–90. https://doi.org/10.1161/01.cir.0000023623.87083.4f. PMID: 12135950.

  • Cohen E, Aviram M, Khatib S, Artoul F, Rabin A, Mannheim D, et al. Human carotid plaque phosphatidylcholine specifically interacts with paraoxonase 1, increases its activity, and enhances its uptake by macrophage at the expense of its binding to HDL. Free Radic Biol Med. 2014;76:14–24. https://doi.org/10.1016/j.freeradbiomed.2014.07.036. Epub 2014 Aug 1. PMID: 25091896.

  • Rosenblat M, Volkova N, Aviram M. Pomegranate phytosterol (β-sitosterol) and polyphenolic antioxidant (punicalagin) addition to statin, significantly protected against macrophage foam cells formation. Atherosclerosis. 2013;226(1):110–7. https://doi.org/10.1016/j.atherosclerosis.2012.10.054. Epub 2012 Oct 31. PMID: 23141585.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zibi YA, Sung RT, Mojon M, Hafid J, Viscardi P, Raberin H. Identification and initial characterization of Pneumocystis carinii soluble antigens in rabbit serum and lung lavage. Eur J Protistol. 1993;29(2):246–53. https://doi.org/10.1016/S0932-4739(11)80279-8. Epub 2011 Nov 2. PMID: 23195548.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheung MC, Vaisar T, Han X, Heinecke JW, Albers JJ. Phospholipid transfer protein in human plasma associates with proteins linked to immunity and inflammation. Biochemistry. 2010;49(34):7314–22. https://doi.org/10.1021/bi100359f. PMID: 20666409; PMCID: PMC2930196.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wiesner P, Leidl K, Boettcher A, Schmitz G, Liebisch G. Lipid profiling of FPLC-separated lipoprotein fractions by electrospray ionization tandem mass spectrometry. J Lipid Res. 2009;50(3):574–85. https://doi.org/10.1194/jlr.D800028-JLR200. Epub 2008 Oct 1. PMID: 18832345.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yetukuri L, Söderlund S, Koivuniemi A, Seppänen-Laakso T, Niemelä PS, Hyvönen M, et al. Composition and lipid spatial distribution of HDL particles in subjects with low and high HDL-cholesterol. J Lipid Res. 2010;51(8):2341–51. https://doi.org/10.1194/jlr.M006494. Epub 2010 Apr 29. PMID: 20431113; PMCID: PMC2903811.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kontush A, Therond P, Zerrad A, Couturier M, Négre-Salvayre A, de Souza JA, et al. Preferential sphingosine-1-phosphate enrichment and sphingomyelin depletion are key features of small dense HDL3 particles: relevance to antiapoptotic and antioxidative activities. Arterioscler Thromb Vasc Biol. 2007;27(8):1843–9. https://doi.org/10.1161/ATVBAHA.107.145672. Epub 2007 Jun 14. PMID: 17569880.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scherer M, Böttcher A, Schmitz G, Liebisch G. Sphingolipid profiling of human plasma and FPLC-separated lipoprotein fractions by hydrophilic interaction chromatography tandem mass spectrometry. Biochim Biophys Acta. 2011;1811(2):68–75. Epub 2010 Nov 23. PMID: 21081176.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ståhlman M, Pham HT, Adiels M, Mitchell TW, Blanksby SJ, Fagerberg B, et al. Clinical dyslipidaemia is associated with changes in the lipid composition and inflammatory properties of apolipoprotein-B-containing lipoproteins from women with type 2 diabetes. Diabetologia. 2012;55(4):1156–66. https://doi.org/10.1007/s00125-011-2444-6. Epub 2012 Jan 18. PMID: 22252473.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hidaka H, Yamauchi K, Ohta H, Akamatsu T, Honda T, Katsuyama T. Specific, rapid, and sensitive enzymatic measurement of sphingomyelin, phosphatidylcholine and lysophosphatidylcholine in serum and lipid extracts. Clin Biochem. 2008;41(14–15):1211–7. https://doi.org/10.1016/j.clinbiochem.2008.06.010. Epub 2008 Jun 26. PMID: 18619432.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pruzanski W, Stefanski E, de Beer FC, de Beer MC, Ravandi A, Kuksis A. Comparative analysis of lipid composition of normal and acute-phase high density lipoproteins. J Lipid Res. 2000;41(7):1035–47. PMID: 10884283.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lalanne F, Pruneta V, Bernard S, Ponsin G. Distribution of diacylglycerols among plasma lipoproteins in control subjects and in patients with non-insulin-dependent diabetes. Eur J Clin Invest. 1999;29(2):139–44. https://doi.org/10.1046/j.1365-2362.1999.00438.x. PMID: 10093000.

  • Maeba R, Ueta N. Ethanolamine plasmalogen and cholesterol reduce the total membrane oxidizability measured by the oxygen uptake method. Biochem Biophys Res Commun. 2003;302(2):265–70. https://doi.org/10.1016/s0006-291x(03)00157-8. PMID: 12604340.

  • Maeba R, Ueta N. Ethanolamine plasmalogens prevent the oxidation of cholesterol by reducing the oxidizability of cholesterol in phospholipid bilayers. J Lipid Res. 2003;44(1):164–71. https://doi.org/10.1194/jlr.m200340-jlr200. PMID: 12518035.

  • Maeba R, Sawada Y, Shimasaki H, Takahashi I, Ueta N. Ethanolamine plasmalogens protect cholesterol-rich liposomal membranes from oxidation caused by free radicals. Chem Phys Lipids. 2002;120(1–2):145–51. https://doi.org/10.1016/s0009-3084(02)00101-9. PMID: 12426083.

  • Lee JY, Min HK, Choi D, Moon MH. Profiling of phospholipids in lipoproteins by multiplexed hollow fiber flow field-flow fractionation and nanoflow liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2010;1217(10):1660–6. https://doi.org/10.1016/j.chroma.2010.01.006. Epub 2010 Jan 11. PMID: 20102765.

  • Davidson WS, Sparks DL, Lund-Katz S, Phillips MC. The molecular basis for the difference in charge between pre-beta- and alpha-migrating high density lipoproteins. J Biol Chem. 1994;269(12):8959–65. PMID: 8132633.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boucher JG, Nguyen T, Sparks DL. Lipoprotein electrostatic properties regulate hepatic lipase association and activity. Biochem Cell Biol. 2007;85(6):696–708. https://doi.org/10.1139/o07-137. PMID: 18059528.

  • Skipski VP, Barclay M, Barclay RK, Fetzer VA, Good JJ, Archibald FM. Lipid composition of human serum lipoproteins. Biochem J. 1967;104(2):340–52. https://doi.org/10.1042/bj1040340. PMID: 6048776; PMCID: PMC1270593.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saito H, Arimoto I, Tanaka M, Sasaki T, Tanimoto T, Okada S, Handa T. Inhibition of lipoprotein lipase activity by sphingomyelin: role of membrane surface structure. Biochim Biophys Acta. 2000;1486(2–3):312–20. https://doi.org/10.1016/s1388-1981(00)00071-8. PMID: 10903482.

  • Nilsson A, Duan RD. Absorption and lipoprotein transport of sphingomyelin. J Lipid Res. 2006;47(1):154–71. https://doi.org/10.1194/jlr.M500357-JLR200. Epub 2005 Oct 26. PMID: 16251722.

  • Lucke S, Levkau B. Endothelial functions of sphingosine-1-phosphate. Cell Physiol Biochem. 2010;26(1):87–96. https://doi.org/10.1159/000315109. Epub 2010 May 18. PMID: 20502008.

  • Pappu R, Schwab SR, Cornelissen I, Pereira JP, Regard JB, Xu Y, et al. Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science. 2007;316(5822):295–8. https://doi.org/10.1126/science.1139221. Epub 2007 Mar 15. PMID: 17363629.

  • Yatomi Y, Ruan F, Hakomori S, Igarashi Y. Sphingosine-1-phosphate: a platelet-activating sphingolipid released from agonist-stimulated human platelets. Blood. 1995;86(1):193–202. PMID: 7795224.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Lalla O, Gofman JW. Ultracentrifugal analysis of serum lipoproteins[R]. Berkeley, CA: Lawrence Berkeley National Lab.(LBNL); 1953. (United States).

    Book 

    Google Scholar
     

  • Nichols AV, Krauss RM, Musliner TA. Nondenaturing polyacrylamide gradient gel electrophoresis. Methods Enzymol. 1986;128:417–31. https://doi.org/10.1016/0076-6879(86)28084-2. PMID: 3724517.

  • Miida T, Miyazaki O, Nakamura Y, Hirayama S, Hanyu O, Fukamachi I, Okada M. Analytical performance of a sandwich enzyme immunoassay for pre beta 1-HDL in stabilized plasma. J Lipid Res. 2003;44(3):645–50. https://doi.org/10.1194/jlr.D200025-JLR200. Epub 2002 Dec 16. PMID: 12562853.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Favari E, Lee M, Calabresi L, Franceschini G, Zimetti F, Bernini F, Kovanen PT. Depletion of pre-beta-high density lipoprotein by human chymase impairs ATP-binding cassette transporter A1- but not scavenger receptor class B type I-mediated lipid efflux to high density lipoprotein. J Biol Chem. 2004;279(11):9930–6. https://doi.org/10.1074/jbc.M312476200. Epub 2003 Dec 29. PMID: 14701812.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Asztalos BF, Schaefer EJ, Horvath KV, Yamashita S, Miller M, Franceschini G, Calabresi L. Role of LCAT in HDL remodeling: investigation of LCAT deficiency states. J Lipid Res. 2007;48(3):592–9. https://doi.org/10.1194/jlr.M600403-JLR200. Epub 2006 Dec 20. PMID: 17183024.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Franceschini G, Calabresi L, Colombo C, Favari E, Bernini F, Sirtori CR. Effects of fenofibrate and simvastatin on HDL-related biomarkers in low-HDL patients. Atherosclerosis. 2007;195(2):385–91. https://doi.org/10.1016/j.atherosclerosis.2006.10.017. Epub 2006 Nov 15. PMID: 17109866.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheung MC, Albers JJ. Characterization of lipoprotein particles isolated by immunoaffinity chromatography. Particles containing A-I and A-II and particles containing A-I but no A-II. J Biol Chem. 1984;259(19):12201–9. PMID: 6434538.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Otvos JD, Jeyarajah EJ, Bennett DW, Krauss RM. Development of a proton nuclear magnetic resonance spectroscopic method for determining plasma lipoprotein concentrations and subspecies distributions from a single, rapid measurement. Clin Chem. 1992;38(9):1632–8. PMID: 1326420.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oram JF, Lawn RM. ABCA1. The gatekeeper for eliminating excess tissue cholesterol. J Lipid Res. 2001;42(8):1173–9. PMID: 11483617.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boadu E, Francis GA. The role of vesicular transport in ABCA1-dependent lipid efflux and its connection with NPC pathways. J Mol Med (Berl). 2006;84(4):266–75. https://doi.org/10.1007/s00109-005-0001-9. Epub 2005 Nov 17. PMID: 16328207.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Landry YD, Denis M, Nandi S, Bell S, Vaughan AM, Zha X. ATP-binding cassette transporter A1 expression disrupts raft membrane microdomains through its ATPase-related functions. J Biol Chem. 2006;281(47):36091–101. https://doi.org/10.1074/jbc.M602247200. Epub 2006 Sep 19. PMID: 16984907.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang N, Silver DL, Thiele C, Tall AR. ATP-binding cassette transporter A1 (ABCA1) functions as a cholesterol efflux regulatory protein. J Biol Chem. 2001;276(26):23742–7. https://doi.org/10.1074/jbc.M102348200. Epub 2001 Apr 17. PMID: 11309399.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Terasaka N, Yu S, Yvan-Charvet L, Wang N, Mzhavia N, Langlois R, et al. ABCG1 and HDL protect against endothelial dysfunction in mice fed a high-cholesterol diet. J Clin Invest. 2008;118(11):3701–13. https://doi.org/10.1172/JCI35470. Epub 2008 Oct 16. PMID: 18924609; PMCID: PMC2567835.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jonas A. Lecithin cholesterol acyltransferase. Biochim Biophys Acta. 2000;1529(1–3):245–56. https://doi.org/10.1016/s1388-1981(00)00153-0. PMID: 11111093.

  • Vaughan AM, Oram JF. ABCG1 redistributes cell cholesterol to domains removable by high density lipoprotein but not by lipid-depleted apolipoproteins. J Biol Chem. 2005;280(34):30150–7. https://doi.org/10.1074/jbc.M505368200. Epub 2005 Jun 30. PMID: 15994327.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Settasatian N, Duong M, Curtiss LK, Ehnholm C, Jauhiainen M, Huuskonen J, Rye KA. The mechanism of the remodeling of high density lipoproteins by phospholipid transfer protein. J Biol Chem. 2001;276(29):26898–905. https://doi.org/10.1074/jbc.M010708200. Epub 2001 Apr 26. PMID: 11325961.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen WJ, Azhar S, Kraemer FB. SR-B1: a Unique Multifunctional Receptor for Cholesterol Influx and Efflux. Annu Rev Physiol. 2018;80:95–116. https://doi.org/10.1146/annurev-physiol-021317-121550. Epub 2017 Nov 10. PMID: 29125794; PMCID: PMC6376870.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang H, Fogo AB, Kon V. Kidneys: key modulators of high-density lipoprotein levels and function. Curr Opin Nephrol Hypertens. 2016;25(3):174–9. https://doi.org/10.1097/MNH.0000000000000217. PMID: 27008596; PMCID: PMC4899840.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lingenhel A, Lhotta K, Neyer U, Heid IM, Rantner B, Kronenberg MF, König P, von Eckardstein A, Schober M, Dieplinger H, Kronenberg F. Role of the kidney in the metabolism of apolipoprotein A-IV: influence of the type of proteinuria. J Lipid Res. 2006;47(9):2071–9. https://doi.org/10.1194/jlr.M600178-JLR200. Epub 2006 Jun 20. PMID: 16788210.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsimihodimos V, Elisaf M. Lipoprotein glomerulopathy. Curr Opin Lipidol. 2011;22(4):262–9. https://doi.org/10.1097/MOL.0b013e328345ebb0. PMID: 21464714.

  • Ramakrishnan M, Fields T, Zhang D, Owoyemi IO, Gupta A, Klein JA, Herrera NS, Gupta M, Cibrik DM. Posttransplant proteinuria due to apolipoprotein E2 deposition in a kidney allograft. Am J Transpl. 2021;21(12):4068–72. https://doi.org/10.1111/ajt.16774. Epub 2021 Aug 16. PMID: 34327815.

    Article 

    Google Scholar
     

  • Holzer M, Schilcher G, Curcic S, Trieb M, Ljubojevic S, Stojakovic T, et al. Dialysis modalities and HDL composition and function. J Am Soc Nephrol. 2015;26(9):2267–76. https://doi.org/10.1681/ASN.2014030309. Epub 2015 Mar 5. PMID: 25745027; PMCID: PMC4552105.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Birner-Gruenberger R, Schittmayer M, Holzer M, Marsche G. Understanding high-density lipoprotein function in disease: recent advances in proteomics unravel the complexity of its composition and biology. Prog Lipid Res. 2014;56:36–46. Epub 2014 Aug 6. PMID: 25107698.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marsche G, Saemann MD, Heinemann A, Holzer M. Inflammation alters HDL composition and function: implications for HDL-raising therapies. Pharmacol Ther. 2013;137(3):341–51. https://doi.org/10.1016/j.pharmthera.2012.12.001. Epub 2012 Dec 14. PMID: 23246719.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang K, Vaziri ND. Down-regulation of hepatic lipase expression in experimental nephrotic syndrome. Kidney Int. 1997;51(6):1933–7. https://doi.org/10.1038/ki.1997.263. PMID: 9186885.

  • Santamarina-Fojo S, González-Navarro H, Freeman L, Wagner E, Nong Z. Hepatic lipase, lipoprotein metabolism, and atherogenesis. Arterioscler Thromb Vasc Biol. 2004;24(10):1750–4. https://doi.org/10.1161/01.ATV.0000140818.00570.2d. Epub 2004 Jul 29. PMID: 15284087.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Annema W, Tietge UJ. Role of hepatic lipase and endothelial lipase in high-density lipoprotein-mediated reverse cholesterol transport. Curr Atheroscler Rep. 2011;13(3):257–65. https://doi.org/10.1007/s11883-011-0175-2. PMID: 21424685; PMCID: PMC3085744.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lewis GF, Rader DJ. New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ Res. 2005;96(12):1221–32. https://doi.org/10.1161/01.RES.0000170946.56981.5c. PMID: 15976321.

  • Bruce C, Beamer LJ, Tall AR. The implications of the structure of the bactericidal/permeability-increasing protein on the lipid-transfer function of the cholesteryl ester transfer protein. Curr Opin Struct Biol. 1998;8(4):426–34. https://doi.org/10.1016/s0959-440x(98)80118-8. PMID: 9729732.

  • Jiang XC, Yu Y. The role of Phospholipid transfer protein in the development of atherosclerosis. Curr Atheroscler Rep. 2021;23(3):9. https://doi.org/10.1007/s11883-021-00907-6. PMID: 33496859; PMCID: PMC8006745.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tall AR, Hogan V, Askinazi L, Small DM. Interaction of plasma high density lipoproteins with dimyristoyllecithin multilamellar liposomes. Biochemistry. 1978;17(2):322–6. https://doi.org/10.1021/bi00595a020. PMID: 202301.

  • Tall AR, Krumholz S, Olivecrona T, Deckelbaum RJ. Plasma phospholipid transfer protein enhances transfer and exchange of phospholipids between very low density lipoproteins and high density lipoproteins during lipolysis. J Lipid Res. 1985;26(7):842–51. PMID: 4031662.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kon V, Yang H, Fazio S. Residual Cardiovascular risk in chronic kidney disease: role of high-density lipoprotein. Arch Med Res. 2015;46(5):379–91. https://doi.org/10.1016/j.arcmed.2015.05.009. Epub 2015 May 23. PMID: 26009251; PMCID: PMC4805367.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alabakovska SB, Todorova BB, Labudovic DD, Tosheska KN. LDL and HDL subclass distribution in patients with end-stage renal diseases. Clin Biochem. 2002;35(3):211–6. https://doi.org/10.1016/s0009-9120(02)00300-4. PMID: 12074829.

  • Miljkovic M, Stefanovic A, Vekic J, Zeljkovic A, Gojkovic T, Simic-Ogrizovic S, et al. Activity of paraoxonase 1 (PON1) on HDL2 and HDL3 subclasses in renal disease. Clin Biochem. 2018;60:52–8. Epub 2018 Aug 18. PMID: 30130521.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mekki K, Bouchenak M, Lamri M, Remaoun M, Belleville J. Changes in plasma lecithin: cholesterol acyltransferase activity, HDL(2), HDL(3) amounts and compositions in patients with chronic renal failure after different times of hemodialysis. Atherosclerosis. 2002;162(2):409–17. https://doi.org/10.1016/s0021-9150(01)00728-6. PMID: 11996961.

  • Soto-Miranda E, Carreón-Torres E, Lorenzo K, Bazán-Salinas B, García-Sánchez C, Franco M, et al. Shift of high-density lipoprotein size distribution toward large particles in patients with proteinuria. Clin Chim Acta. 2012;414:241–5. https://doi.org/10.1016/j.cca.2012.09.028. Epub 2012 Oct 2. PMID: 23041214.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gluba-Brzózka A, Franczyk B, Banach M, Rysz-Górzyńska M. Do HDL and LDL subfractions play a role in atherosclerosis in end-stage renal disease (ESRD) patients? Int Urol Nephrol. 2017;49(1):155–64. Epub 2016 Dec 9. PMID: 27942970.

    Article 
    PubMed 

    Google Scholar
     

  • Homma K, Homma Y, Shiina Y, Wakino S, Suzuki M, Fujishima S, Hayashi K, Hori S, Itoh H. Skew of plasma low- and high-density lipoprotein distributions to less dense subfractions in normotriglyceridemic chronic kidney disease patients on maintenance hemodialysis treatment. Nephron Clin Pract. 2013;123(1–2):41–5. https://doi.org/10.1159/000351506. Epub 2013 Jun 6. PMID: 23752220.

  • Stefanović A, Ristovski-Kornic D, Kotur-Stevuljević J, Spasojević-Kalimanovska V, Vekić J, et al. Alterations of HDL particles in children with end-stage Renal Disease. J Med Biochem. 2017;36(4):358–65. https://doi.org/10.1515/jomb-2017-0019. PMID: 30581333; PMCID: PMC6294087.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamamoto S, Yancey PG, Ikizler TA, Jerome WG, Kaseda R, Cox B, et al. Dysfunctional high-density lipoprotein in patients on chronic hemodialysis. J Am Coll Cardiol. 2012;60(23):2372–9. https://doi.org/10.1016/j.jacc.2012.09.013. Epub 2012 Nov 7. PMID: 23141484; PMCID: PMC9667707.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weichhart T, Kopecky C, Kubicek M, Haidinger M, Döller D, Katholnig K, et al. Serum amyloid A in uremic HDL promotes inflammation. J Am Soc Nephrol. 2012;23(5):934–47. Epub 2012 Jan 26. PMID: 22282592; PMCID: PMC3338291.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meier SM, Wultsch A, Hollaus M, Ammann M, Pemberger E, Liebscher F, et al. Effect of chronic kidney disease on macrophage cholesterol efflux. Life Sci. 2015;136:1–6. Epub 2015 Jun 30. PMID: 26135622.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pownall HJ. Detergent-mediated phospholipidation of plasma lipoproteins increases HDL cholesterophilicity and cholesterol efflux via SR-BI. Biochemistry. 2006;45(38):11514–22. https://doi.org/10.1021/bi0608717. PMID: 16981711; PMCID: PMC2556864.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tchoua U, Gillard BK, Pownall HJ. HDL superphospholipidation enhances key steps in reverse cholesterol transport. Atherosclerosis. 2010;209(2):430–5. https://doi.org/10.1016/j.atherosclerosis.2009.10.002. Epub 2009 Oct 12. PMID: 19892352; PMCID: PMC2846204.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Niisuke K, Kuklenyik Z, Horvath KV, Gardner MS, Toth CA, Asztalos BF. Composition-function analysis of HDL subpopulations: influence of lipid composition on particle functionality. J Lipid Res. 2020;61(3):306–15. https://doi.org/10.1194/jlr.RA119000258. Epub 2020 Jan 17. PMID: 31953305; PMCID: PMC7053829.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agarwala AP, Rodrigues A, Risman M, McCoy M, Trindade K, Qu L, et al. High-density lipoprotein (HDL) phospholipid content and cholesterol efflux capacity are reduced in patients with very high HDL cholesterol and coronary disease. Arterioscler Thromb Vasc Biol. 2015;35(6):1515–9. Epub 2015 Apr 2. PMID: 25838421; PMCID: PMC4560933.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yancey PG, de la Llera-Moya M, Swarnakar S, Monzo P, Klein SM, Connelly MA, et al. High density lipoprotein phospholipid composition is a major determinant of the bi-directional flux and net movement of cellular free cholesterol mediated by scavenger receptor BI. J Biol Chem. 2000;275(47):36596–604. https://doi.org/10.1074/jbc.M006924200. PMID: 10964930.

  • Tardif JC. Emerging high-density lipoprotein infusion therapies: fulfilling the promise of epidemiology? J Clin Lipidol. 2010 Sep-Oct;4(5):399–404. https://doi.org/10.1016/j.jacl.2010.08.018. Epub 2010 Aug 27. PMID: 21122683.

  • Pamir N, Hutchins P, Ronsein G, Vaisar T, Reardon CA, Getz GS, et al. Proteomic analysis of HDL from inbred mouse strains implicates APOE associated with HDL in reduced cholesterol efflux capacity via the ABCA1 pathway. J Lipid Res. 2016;57(2):246–57. https://doi.org/10.1194/jlr.M063701. Epub 2015 Dec 15. PMID: 26673204; PMCID: PMC4727420.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sposito AC, Carmo HR, Barreto J, Sun L, Carvalho LSF, Feinstein SB, Zanotti I, et al. HDL-Targeted Therapies During Myocardial Infarction. Cardiovasc Drugs Ther. 2019;33(3):371–381. https://doi.org/10.1007/s10557-019-06865-1. PMID: 30778806.

  • Suematsu Y, Kawachi E, Idemoto Y, Matsuo Y, Kuwano T, Kitajima K, Imaizumi S, et al. Anti-atherosclerotic effects of an improved apolipoprotein A-I mimetic peptide. Int J Cardiol. 2019;297:111–7. Epub 2019 Aug 22. PMID: 31519377.

    Article 
    PubMed 

    Google Scholar
     

  • Tsun JG, Shiu SW, Wong Y, Yung S, Chan TM, Tan KC. Impact of serum amyloid A on cellular cholesterol efflux to serum in type 2 diabetes mellitus. Atherosclerosis. 2013;231(2):405–10. https://doi.org/10.1016/j.atherosclerosis.2013.10.008. Epub 2013 Oct 18. PMID: 24267259.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Beer MC, Wroblewski JM, Noffsinger VP, Ji A, Meyer JM, van der Westhuyzen DR, et al. The Impairment of Macrophage-to-Feces Reverse Cholesterol Transport during inflammation does not depend on serum amyloid A. J Lipids. 2013;2013:283486. https://doi.org/10.1155/2013/283486. Epub 2013 Jan 30. PMID: 23431457; PMCID: PMC3572687.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ganda A, Yvan-Charvet L, Zhang Y, Lai EJ, Regunathan-Shenk R, Hussain FN, et al. Plasma metabolite profiles, cellular cholesterol efflux, and non-traditional cardiovascular risk in patients with CKD. J Mol Cell Cardiol. 2017;112:114–22. Epub 2017 May 4. PMID: 28478047; PMCID: PMC5708851.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holzer M, Gauster M, Pfeifer T, Wadsack C, Fauler G, Stiegler P, et al. Protein carbamylation renders high-density lipoprotein dysfunctional. Antioxid Redox Signal. 2011;14(12):2337–46. https://doi.org/10.1089/ars.2010.3640. Epub 2011 Mar 28. PMID: 21235354; PMCID: PMC3380531.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Z, Nicholls SJ, Rodriguez ER, Kummu O, Hörkkö S, Barnard J, et al. Protein carbamylation links inflammation, smoking, uremia and atherogenesis. Nat Med. 2007;13(10):1176–84. https://doi.org/10.1038/nm1637. Epub 2007 Sep 9. PMID: 17828273.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oimomi M, Nishimoto S, Matsumoto S, Hatanaka H, Ishikawa K, Kawasaki T, Yoshimura Y, Baba S. Carbamylated plasma protein in renal failure. Nihon Jinzo Gakkai Shi. 1986;28(3):269–71. PMID: 3723861.

    CAS 
    PubMed 

    Google Scholar
     

  • Speer T, Rohrer L, Blyszczuk P, Shroff R, Kuschnerus K, Kränkel N, et al. Abnormal high-density lipoprotein induces endothelial dysfunction via activation of toll-like receptor-2. Immunity. 2013;38(4):754–68. Epub 2013 Mar 7. PMID: 23477738.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shroff R, Speer T, Colin S, Charakida M, Zewinger S, Staels B, et al. HDL in children with CKD promotes endothelial dysfunction and an abnormal vascular phenotype. J Am Soc Nephrol. 2014;25(11):2658–68. https://doi.org/10.1681/ASN.2013111212. Epub 2014 May 22. PMID: 24854267; PMCID: PMC4214534.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moradi H, Pahl MV, Elahimehr R, Vaziri ND. Impaired antioxidant activity of high-density lipoprotein in chronic kidney disease. Transl Res. 2009;153(2):77–85. Epub 2008 Dec 10. PMID: 19138652.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tölle M, Pawlak A, Schuchardt M, Kawamura A, Tietge UJ, Lorkowski S, et al. HDL-associated lysosphingolipids inhibit NAD(P)H oxidase-dependent monocyte chemoattractant protein-1 production. Arterioscler Thromb Vasc Biol. 2008;28(8):1542–8. Epub 2008 May 15. PMID: 18483405; PMCID: PMC2723752.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morena M, Cristol JP, Dantoine T, Carbonneau MA, Descomps B, Canaud B. Protective effects of high-density lipoprotein against oxidative stress are impaired in haemodialysis patients. Nephrol Dial Transplant. 2000;15(3):389–95. https://doi.org/10.1093/ndt/15.3.389. PMID: 10692526.

  • Chang CT, Lim YP, Lee CW, Liao HY, Chen FY, Chang CM, et al. PON-1 carbamylation is enhanced in HDL of uremia patients. J Food Drug Anal. 2019;27(2):542–50. https://doi.org/10.1016/j.jfda.2018.09.007. Epub 2018 Oct 28. PMID: 30987726; PMCID: PMC9296198.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duverger N, Kruth H, Emmanuel F, Caillaud JM, Viglietta C, Castro G, et al. Inhibition of atherosclerosis development in cholesterol-fed human apolipoprotein A-I-transgenic rabbits. Circulation. 1996;94(4):713–7. https://doi.org/10.1161/01.cir.94.4.713. PMID: 8772693.

  • Miyazaki A, Sakuma S, Morikawa W, Takiue T, Miake F, Terano T, et al. Intravenous injection of rabbit apolipoprotein A-I inhibits the progression of atherosclerosis in cholesterol-fed rabbits. Arterioscler Thromb Vasc Biol. 1995;15(11):1882–8. https://doi.org/10.1161/01.atv.15.11.1882. PMID: 7583568.

  • Rubin EM, Krauss RM, Spangler EA, Verstuyft JG, Clift SM. Inhibition of early atherogenesis in transgenic mice by human apolipoprotein AI. Nature. 1991;353(6341):265–7. https://doi.org/10.1038/353265a0. PMID: 1910153.

  • Li Y, Dong JB, Wu MP. Human ApoA-I overexpression diminishes LPS-induced systemic inflammation and multiple organ damage in mice. Eur J Pharmacol. 2008;590(1–3):417–22. https://doi.org/10.1016/j.ejphar.2008.06.047. Epub 2008 Jun 16. PMID: 18593575.

  • Moreira RS, Irigoyen M, Sanches TR, Volpini RA, Camara NO, Malheiros DM, et al. Apolipoprotein A-I mimetic peptide 4F attenuates kidney injury, heart injury, and endothelial dysfunction in sepsis. Am J Physiol Regul Integr Comp Physiol. 2014;307(5):R514–24. https://doi.org/10.1152/ajpregu.00445.2013. Epub 2014 Jun 11. PMID: 24920733.

  • Moreira RS, Irigoyen MC, Capcha JMC, Sanches TR, Gutierrez PS, Garnica MR, et al. Synthetic apolipoprotein A-I mimetic peptide 4F protects hearts and kidneys after myocardial infarction. Am J Physiol Regul Integr Comp Physiol. 2020;318(3):R529–44. https://doi.org/10.1152/ajpregu.00185.2019. Epub 2020 Jan 22. PMID: 31967856; PMCID: PMC7099456.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buga GM, Frank JS, Mottino GA, Hakhamian A, Narasimha A, Watson AD, et al. D-4F reduces EO6 immunoreactivity, SREBP-1c mRNA levels, and renal inflammation in LDL receptor-null mice fed a Western diet. J Lipid Res. 2008;49(1):192–205. https://doi.org/10.1194/jlr.M700433-JLR200. Epub 2007 Oct 9. PMID: 17925450.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peterson SJ, Husney D, Kruger AL, Olszanecki R, Ricci F, Rodella LF, et al. Long-term treatment with the apolipoprotein A1 mimetic peptide increases antioxidants and vascular repair in type I diabetic rats. J Pharmacol Exp Ther. 2007;322(2):514–20. https://doi.org/10.1124/jpet.107.119479. Epub 2007 May 8. PMID: 17488882.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo L, Morin EE, Yu M, Mei L, Fawaz MV, Wang Q, et al. Replenishing HDL with synthetic HDL has multiple protective effects against sepsis in mice. Sci Signal. 2022;15(725):eabl9322. https://doi.org/10.1126/scisignal.abl9322. Epub 2022 Mar 15. PMID: 35290084; PMCID: PMC9825056.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strazzella A, Ossoli A, Calabresi L. High-density lipoproteins and the kidney. Cells. 2021;10(4):764. https://doi.org/10.3390/cells10040764. PMID: 33807271; PMCID: PMC8065870.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vaziri ND, Liang K, Parks JS. Acquired lecithin-cholesterol acyltransferase deficiency in nephrotic syndrome. Am J Physiol Renal Physiol. 2001;280(5):F823–8. https://doi.org/10.1152/ajprenal.2001.280.5.F823. PMID: 11292624.

  • Baragetti A, Ossoli A, Strazzella A, Simonelli S, Baragetti I, Grigore L, et al. Low plasma lecithin: cholesterol acyltransferase (LCAT) concentration predicts chronic kidney disease. J Clin Med. 2020;9(7):2289. https://doi.org/10.3390/jcm9072289. PMID: 32708515; PMCID: PMC7408930.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vaisman BL, Neufeld EB, Freeman LA, Gordon SM, Sampson ML, Pryor M, et al. LCAT enzyme replacement therapy reduces LpX and improves kidney function in a mouse model of Familial LCAT Deficiency. J Pharmacol Exp Ther. 2019;368(3):423–34. Epub 2018 Dec 18. PMID: 30563940; PMCID: PMC6374542.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohammed CJ, Xie Y, Brewster PS, Ghosh S, Dube P, Sarsour T, et al. Circulating lactonase activity but not protein level of PON-1 predicts adverse outcomes in subjects with chronic kidney disease. J Clin Med. 2019;8(7):1034. https://doi.org/10.3390/jcm8071034. PMID: 31311140; PMCID: PMC6678354.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gugliucci A, Mehlhaff K, Kinugasa E, Ogata H, Hermo R, Schulze J, et al. Paraoxonase-1 concentrations in end-stage renal disease patients increase after hemodialysis: correlation with low molecular AGE adduct clearance. Clin Chim Acta. 2007;377(1–2):213–20. https://doi.org/10.1016/j.cca.2006.09.028. Epub 2006 Oct 11. PMID: 17118352.

  • Ribeiro S, do Sameiro Faria M, Mascarenhas-Melo F, Freitas I, Mendonça MI, Nascimento H, et al. Main determinants of PON1 activity in hemodialysis patients. Am J Nephrol. 2012;36(4):317–23. https://doi.org/10.1159/000342235. Epub 2012 Sep 22. PMID: 23007074.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kennedy DJ, Tang WH, Fan Y, Wu Y, Mann S, Pepoy M, et al. Diminished antioxidant activity of high-density lipoprotein-associated proteins in chronic kidney disease. J Am Heart Assoc. 2013;2(2):e000104. https://doi.org/10.1161/JAHA.112.000104. PMID: 23557751; PMCID: PMC3647254.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rajković MG, Rumora L, Juretić D, Grubisić TZ, Flegar-Mestrić Z, Vrkić N, et al. Effect of non-genetic factors on paraoxonase 1 activity in patients undergoing hemodialysis. Clin Biochem. 2010;43(18):1375–80. Epub 2010 Aug 31. PMID: 20807524.

    Article 
    PubMed 

    Google Scholar
     

  • Kunutsor SK, Bakker SJ, James RW, Dullaart RP. Serum paraoxonase-1 activity and risk of incident cardiovascular disease: the PREVEND study and meta-analysis of prospective population studies. Atherosclerosis. 2016;245:143–54. https://doi.org/10.1016/j.atherosclerosis.2015.12.021. Epub 2015 Dec 19. PMID: 26724525.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tardif JC, Grégoire J, L’Allier PL, Ibrahim R, Lespérance J, Heinonen TM, et al. Effect of rHDL on atherosclerosis-safety and efficacy (ERASE) investigators. Effects of reconstituted high-density lipoprotein infusions on coronary atherosclerosis: a randomized controlled trial. JAMA. 2007;297(15):1675–82. https://doi.org/10.1001/jama.297.15.jpc70004. Epub 2007 Mar 26. PMID: 17387133.

    Article 
    PubMed 

    Google Scholar
     

  • Stoekenbroek RM, Stroes ES, Hovingh GK. ApoA-I mimetics. Handb Exp Pharmacol. 2015;224:631–48. https://doi.org/10.1007/978-3-319-09665-0_21. PMID: 25523005.

  • Krause BR, Remaley AT. Reconstituted HDL for the acute treatment of acute coronary syndrome. Curr Opin Lipidol. 2013;24(6):480–6. https://doi.org/10.1097/MOL.0000000000000020. PMID: 24184938.

  • Easton R, Gille A, D’Andrea D, Davis R, Wright SD, Shear C. A multiple ascending dose study of CSL112, an infused formulation of ApoA-I. J Clin Pharmacol. 2014;54(3):301–10. https://doi.org/10.1002/jcph.194. Epub 2013 Oct 22. PMID: 24122814.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gibson CM, Kerneis M, Yee MK, Daaboul Y, Korjian S, Mehr AP, et al. The CSL112-2001 trial: Safety and tolerability of multiple doses of CSL112 (apolipoprotein A-I [human]), an intravenous formulation of plasma-derived apolipoprotein A-I, among subjects with moderate renal impairment after acute myocardial infarction. Am Heart J. 2019;208:81–90. Epub 2018 Nov 22. PMID: 30580130.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pavanello C, Turri M, Strazzella A, Tulissi P, Pizzolitto S, De Maglio G, et al. The HDL mimetic CER-001 remodels plasma lipoproteins and reduces kidney lipid deposits in inherited lecithin:cholesterol acyltransferase deficiency. J Intern Med. 2022;291(3):364–70. https://doi.org/10.1111/joim.13404. Epub 2021 Nov 11. PMID: 34761839; PMCID: PMC9299003.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nicholls SJ, Andrews J, Kastelein JJP, Merkely B, Nissen SE, Ray KK, et al. Effect of serial infusions of CER-001, a Pre-β High-Density Lipoprotein Mimetic, on coronary atherosclerosis in patients following Acute Coronary syndromes in the CER-001 atherosclerosis regression Acute Coronary Syndrome Trial: a Randomized Clinical Trial. JAMA Cardiol. 2018;3(9):815–22. https://doi.org/10.1001/jamacardio.2018.2121. PMID: 30046828; PMCID: PMC6233644.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kataoka Y, Andrews J, Duong M, Nguyen T, Schwarz N, Fendler J, et al. Regression of coronary atherosclerosis with infusions of the high-density lipoprotein mimetic CER-001 in patients with more extensive plaque burden. Cardiovasc Diagn Ther. 2017;7(3):252–63. https://doi.org/10.21037/cdt.2017.02.01. PMID: 28567351; PMCID: PMC5440269.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Säemann M, Cejka D, Schmaldienst S, Rosenkranz AR, Mayer G. Value of SGLT-2 inhibitors in the treatment of chronic kidney disease: clinical and practical implications. Wien Klin Wochenschr. 2023;135(3–4):97–109. https://doi.org/10.1007/s00508-022-02096-x. Epub 2022 Oct 17. PMID: 36251099.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heerspink HJL, Stefánsson BV, Correa-Rotter R, Chertow GM, Greene T, Hou FF, et al. DAPA-CKD trial committees and investigators. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020;383(15):1436–46. https://doi.org/10.1056/NEJMoa2024816. Epub 2020 Sep 24. PMID: 32970396.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bakris G, Oshima M, Mahaffey KW, Agarwal R, Cannon CP, Capuano G, et al. Effects of Canagliflozin in patients with baseline eGFR < 30 ml/min per 1.73 m2: Subgroup Analysis of the Randomized CREDENCE Trial. Clin J Am Soc Nephrol. 2020;15(12):1705–14. Epub 2020 Nov 19. PMID: 33214158; PMCID: PMC7769025.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al. CREDENCE trial investigators. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380(24):2295–306. https://doi.org/10.1056/NEJMoa1811744. Epub 2019 Apr 14. PMID: 30990260.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mavrakanas TA, Tsoukas MA, Brophy JM, Sharma A, Gariani K. SGLT-2 inhibitors improve cardiovascular and renal outcomes in patients with CKD: a systematic review and meta-analysis. Sci Rep. 2023;13(1):15922. https://doi.org/10.1038/s41598-023-42989-z. PMID: 37741858; PMCID: PMC10517929.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kidney Disease: Improving Global Outcomes (KDIGO) Diabetes Work Group. KDIGO 2020 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int. 2020;98(4S):S1–S115. https://doi.org/10.1016/j.kint.2020.06.019. PMID: 32998798.

  • Li J, Yu Y, Sun Y, Yu B, Tan X, Wang B, et al. SGLT2 inhibition, circulating metabolites, and atrial fibrillation: a mendelian randomization study. Cardiovasc Diabetol. 2023;22(1):278. https://doi.org/10.1186/s12933-023-02019-8. PMID: 37848934; PMCID: PMC10583416.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fadini GP, Bonora BM, Zatti G, Vitturi N, Iori E, Marescotti MC, et al. Effects of the SGLT2 inhibitor dapagliflozin on HDL cholesterol, particle size, and cholesterol efflux capacity in patients with type 2 diabetes: a randomized placebo-controlled trial. Cardiovasc Diabetol. 2017;16(1):42. https://doi.org/10.1186/s12933-017-0529-3. PMID: 28376855; PMCID: PMC5379610.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zaccardi F, Webb DR, Htike ZZ, Youssef D, Khunti K, Davies MJ. Efficacy and safety of sodium-glucose co-transporter-2 inhibitors in type 2 diabetes mellitus: systematic review and network meta-analysis. Diabetes Obes Metab. 2016;18(8):783–94. https://doi.org/10.1111/dom.12670. Epub 2016 May 13. PMID: 27059700.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang K, Zhang Y, Zhao C, Jiang M. SGLT-2 inhibitors and DPP-4 inhibitors as second-line drugs in patients with type 2 diabetes: a Meta-analysis of Randomized clinical trials. Horm Metab Res. 2018;50(10):768–77. https://doi.org/10.1055/a-0733-7919. Epub 2018 Sep 27. PMID: 30261527.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cha SA, Park YM, Yun JS, Lim TS, Song KH, Yoo KD, et al. A comparison of effects of DPP-4 inhibitor and SGLT2 inhibitor on lipid profile in patients with type 2 diabetes. Lipids Health Dis. 2017;16(1):58. https://doi.org/10.1186/s12944-017-0443-4. PMID: 28403877; PMCID: PMC5390350.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ishibashi F, Kosaka A, Tavakoli M. Sodium glucose Cotransporter-2 inhibitor protects against Diabetic Neuropathy and Nephropathy in modestly controlled type 2 diabetes: Follow-Up study. Front Endocrinol (Lausanne). 2022;13:864332. https://doi.org/10.3389/fendo.2022.864332. PMID: 35784562; PMCID: PMC9247156.

    Article 
    PubMed 

    Google Scholar
     

  • Agcakaya E, Mutlu HH, Erbakan A, Sargin M. Comparison of the Impact of SGLT2-Inhibitors and Exenatide on Body Fat Composition. J Coll Physicians Surg Pak. 2023;33(3):308–313. https://doi.org/10.29271/jcpsp.2023.03.308. PMID: 36945162.

  • American Diabetes Association. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2021. Diabetes Care. 2021;44(Suppl 1):S111-S124. https://doi.org/10.2337/dc21-S009. PMID: 33298420.

  • Mazzieri A, Basta G, Calafiore R, Luca G. GLP-1 RAs and SGLT2i: two antidiabetic agents associated with immune and inflammation modulatory properties through the common AMPK pathway. Front Immunol. 2023;14:1163288. https://doi.org/10.3389/fimmu.2023.1163288. PMID: 38053992; PMCID: PMC10694219.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kayaniyil S, Lozano-Ortega G, Bennett HA, Johnsson K, Shaunik A, Grandy S, et al. A Network Meta-analysis comparing Exenatide once Weekly with other GLP-1 receptor agonists for the treatment of type 2 diabetes Mellitus. Diabetes Ther. 2016;7(1):27–43. Epub 2016 Feb 17. PMID: 26886440; PMCID: PMC4801811.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hernandez AF, Green JB, Janmohamed S, D’Agostino RB, Sr, Granger CB, Jones NP, et al. Harmony Outcomes committees and investigators. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (harmony outcomes): a double-blind, randomised placebo-controlled trial. Lancet. 2018;392(10157):1519–29. https://doi.org/10.1016/S0140-6736(18)32261-X. Epub 2018 Oct 2. PMID: 30291013.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gerstein HC, Colhoun HM, Dagenais GR, Diaz R, Lakshmanan M, Pais P, et al. REWIND investigators. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet. 2019;394(10193):121–30. https://doi.org/10.1016/S0140-6736(19)31149-3. Epub 2019 Jun 9. PMID: 31189511.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mann JFE, Ørsted DD, Brown-Frandsen K, Marso SP, Poulter NR, Rasmussen S, et al. LEADER Steering Committee and Investigators. Liraglutide and Renal Outcomes in Type 2 Diabetes. N Engl J Med. 2017;377(9):839–848. https://doi.org/10.1056/NEJMoa1616011. PMID: 28854085.

  • Mann JFE, Hansen T, Idorn T, Leiter LA, Marso SP, Rossing P, et al. Effects of once-weekly subcutaneous semaglutide on kidney function and safety in patients with type 2 diabetes: a post-hoc analysis of the SUSTAIN 1–7 randomised controlled trials. Lancet Diabetes Endocrinol. 2020;8(11):880–93. https://doi.org/10.1016/S2213-8587(20)30313-2. Epub 2020 Sep 21. PMID: 32971040.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gerstein HC, Colhoun HM, Dagenais GR, Diaz R, Lakshmanan M, Pais P, et al. REWIND investigators. Dulaglutide and renal outcomes in type 2 diabetes: an exploratory analysis of the REWIND randomised, placebo-controlled trial. Lancet. 2019;394(10193):131–8. https://doi.org/10.1016/S0140-6736(19)31150-X. Epub 2019 Jun 9. PMID: 31189509.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tuttle KR, Lakshmanan MC, Rayner B, Busch RS, Zimmermann AG, Woodward DB, et al. Dulaglutide versus insulin glargine in patients with type 2 diabetes and moderate-to-severe chronic kidney disease (AWARD-7): a multicentre, open-label, randomised trial. Lancet Diabetes Endocrinol. 2018;6(8):605–17. https://doi.org/10.1016/S2213-8587(18)30104-9. Epub 2018 Jun 14. PMID: 29910024.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muskiet MHA, Tonneijck L, Huang Y, Liu M, Saremi A, Heerspink HJL, et al. Lixisenatide and renal outcomes in patients with type 2 diabetes and acute coronary syndrome: an exploratory analysis of the ELIXA randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2018;6(11):859–869. https://doi.org/10.1016/S2213-8587(18)30268-7. Epub 2018 Oct 3. PMID: 30292589.

  • Hiramatsu T, Ozeki A, Ishikawa H, Furuta S. Long Term effects of Liraglutide in Japanese patients with type 2 diabetes among the subgroups with different renal functions: results of 2-Year prospective study. Drug Res (Stuttg). 2017;67(11):640–6. https://doi.org/10.1055/s-0043-110603. Epub 2017 Jul 24. PMID: 28738426.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • von Scholten BJ, Persson F, Rosenlund S, Hovind P, Faber J, Hansen TW, et al. The effect of liraglutide on renal function: a randomized clinical trial. Diabetes Obes Metab. 2017;19(2):239–47. https://doi.org/10.1111/dom.12808. Epub 2016 Nov 21. PMID: 27753201.

    Article 
    CAS 

    Google Scholar
     

  • Imamura S, Hirai K, Hirai A. The glucagon-like peptide-1 receptor agonist, liraglutide, attenuates the progression of overt diabetic nephropathy in type 2 diabetic patients. Tohoku J Exp Med. 2013;231(1):57–61. https://doi.org/10.1620/tjem.231.57. PMID: 24064677.