Search
Search
Close this search box.

The role of antibody glycosylation in autoimmune and alloimmune kidney diseases – Nature Reviews Nephrology

  • Leone, G. M., Mangano, K., Petralia, M. C., Nicoletti, F. & Fagone, P. Past, present and (foreseeable) future of biological anti-TNF alpha therapy. J. Clin. Med. 12, 1630 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, T., Zhang, J., Xu-Monette, Z. Y. & Young, K. H. The progress of novel strategies on immune-based therapy in relapsed or refractory diffuse large B-cell lymphoma. Exp. Hematol. Oncol. 12, 72 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pegram, M. et al. Evolving perspectives on the treatment of HR+/HER2+ metastatic breast cancer. Ther. Adv. Med. Oncol. 15, 17588359231187201 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rizzetto, G., De Simoni, E., Molinelli, E., Offidani, A. & Simonetti, O. Efficacy of pembrolizumab in advanced melanoma: a narrative review. Int. J. Mol. Sci. 24, 12383 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao, Z. & Murakhovskaya, I. Rituximab resistance in ITP and beyond. Front. Immunol. 14, 1215216 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yadav, S. et al. Role of daratumumab in the frontline management of multiple myeloma: a narrative review. Expert Rev. Hematol. 16, 743–760 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schroeder, H. W. & Cavacini, L. Structure and function of immunoglobulins. J. Allergy Clin. Immunol. 125, S41–52 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kerr, M. A. The structure and function of human IgA. Biochem. J. 271, 285–296 (1990).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Sousa-Pereira, P. & Woof, J. M. IgA: structure, function, and developability. Antibodies 8, 57 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keyt, B. A., Baliga, R., Sinclair, A. M., Carroll, S. F. & Peterson, M. S. Structure, function, and therapeutic use of IgM antibodies. Antibodies 9, 53 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sutton, B. J., Davies, A. M., Bax, H. J. & Karagiannis, S. N. IgE antibodies: from structure to function and clinical translation. Antibodies 8, 19 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vidarsson, G., Dekkers, G. & Rispens, T. IgG subclasses and allotypes: from structure to effector functions. Front. Immunol. 5, 520 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schwab, I. & Nimmerjahn, F. Intravenous immunoglobulin therapy: how does IgG modulate the immune system? Nat. Rev. Immunol. 13, 176–189 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arnold, J. N., Wormald, M. R., Sim, R. B., Rudd, P. M. & Dwek, R. A. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu. Rev. Immunol. 25, 21–50 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Flynn, G. C., Chen, X., Liu, Y. D., Shah, B. & Zhang, Z. Naturally occurring glycan forms of human immunoglobulins G1 and G2. Mol. Immunol. 47, 2074–2082 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baković, M. P. et al. High-throughput IgG Fc N-glycosylation profiling by mass spectrometry of glycopeptides. J. Proteome Res. 12, 821–831 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Anumula, K. R. Quantitative glycan profiling of normal human plasma derived immunoglobulin and its fragments Fab and Fc. J. Immunol. Methods 382, 167–176 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jefferis, R. Glycosylation of natural and recombinant antibody molecules. Adv. Exp. Med. Biol. 564, 143–148 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koers, J. et al. Differences in IgG autoantibody Fab glycosylation across autoimmune diseases. J. Allergy Clin. Immunol. 151, 1646–1654 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bondt, A. et al. Immunoglobulin G (IgG) Fab glycosylation analysis using a new mass spectrometric high-throughput profiling method reveals pregnancy-associated changes. Mol. Cell Proteom. 13, 3029–3039 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Beck, L. H. et al. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N. Engl. J. Med. 361, 11–21 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grupper, A. et al. Recurrent membranous nephropathy after kidney transplantation: treatment and long-term implications. Transplantation 100, 2710–2716 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Passerini, P., Malvica, S., Tripodi, F., Cerutti, R. & Messa, P. Membranous nephropathy (MN) recurrence after renal transplantation. Front. Immunol. 10, 1326 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moroni, G. et al. Long-term outcome of renal transplantation in patients with idiopathic membranous glomerulonephritis (MN). Nephrol. Dial. Transpl. 25, 3408–3415 (2010).

    Article 

    Google Scholar
     

  • Zhu, D. et al. Acquisition of potential N-glycosylation sites in the immunoglobulin variable region by somatic mutation is a distinctive feature of follicular lymphoma. Blood 99, 2562–2568 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dunn-Walters, D., Boursier, L. & Spencer, J. Effect of somatic hypermutation on potential N-glycosylation sites in human immunoglobulin heavy chain variable regions. Mol. Immunol. 37, 107–113 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van de Bovenkamp, F. S. et al. Adaptive antibody diversification through N-linked glycosylation of the immunoglobulin variable region. Proc. Natl Acad. Sci. USA 115, 1901–1906 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taylor, M. E. & Drickamer, K. Introduction to Glycobiology. (Oxford University Press, 2011).

  • Aebi, M. N-linked protein glycosylation in the ER. Biochim. Biophys. Acta Mol. Cell Res. 1833, 2430–2437 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Aebi, M., Bernasconi, R., Clerc, S. & Molinari, M. N-glycan structures: recognition and processing in the ER. Trends Biochem. Sci. 35, 74–82 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Breitling, J. & Aebi, M. N-linked protein glycosylation in the endoplasmic reticulum. Cold Spring Harb. Perspect. Biol. 5, a013359 (2013).

  • Kornfeld, R. & Kornfeld, S. Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 54, 631–664 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tu, L. & Banfield, D. K. Localization of Golgi-resident glycosyltransferases. Cell. Mol. Life Sci. 67, 29–41 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jaśkiewicz, E. Retention of glycosyltransferases in the Golgi apparatus. Acta Biochim. Pol. 44, 173–179 (1997).

    Article 
    PubMed 

    Google Scholar
     

  • Hassinen, A. et al. Functional organization of Golgi N- and O-glycosylation pathways involves pH-dependent complex formation that is impaired in cancer cells. J. Biol. Chem. 286, 38329–38340 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wuhrer, M. et al. Glycosylation profiling of immunoglobulin G (IgG) subclasses from human serum. Proteomics 7, 4070–4081 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Masuda, K. et al. Pairing of oligosaccharides in the Fc region of immunoglobulin G. FEBS Lett. 473, 349–357 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Knezević, A. et al. Variability, heritability and environmental determinants of human plasma N-glycome. J. Proteome Res. 8, 694–701 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Zauner, G. et al. Glycoproteomic analysis of antibodies. Mol. Cell Proteom. 12, 856–865 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Kobata, A. The N-linked sugar chains of human immunoglobulin G: their unique pattern, and their functional roles. Biochim. Biophys. Acta 1780, 472–478 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gudelj, I., Lauc, G. & Pezer, M. Immunoglobulin G glycosylation in aging and diseases. Cell. Immunol. 333, 65–79 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Štambuk, J. et al. Global variability of the human IgG glycome. Aging 12, 15222–15259 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huffman, J. E. et al. Comparative performance of four methods for high-throughput glycosylation analysis of immunoglobulin G in genetic and epidemiological research. Mol. Cell Proteom. 13, 1598–1610 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Shields, R. L. et al. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J. Biol. Chem. 277, 26733–26740 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Subedi, G. P. & Barb, A. W. The immunoglobulin G1 N-glycan composition affects binding to each low affinity Fc γ receptor. MAbs 8, 1512–1524 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Golay, J. et al. Glycoengineered CD20 antibody obinutuzumab activates neutrophils and mediates phagocytosis through CD16B more efficiently than rituximab. Blood 122, 3482–3491 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dekkers, G. et al. Decoding the human immunoglobulin G-glycan repertoire reveals a spectrum of Fc-receptor- and complement-mediated-effector activities. Front. Immunol. 8, 877 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferrara, C. et al. Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcγRIII and antibodies lacking core fucose. Proc. Natl Acad. Sci. USA 108, 12669–12674 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferrara, C., Stuart, F., Sondermann, P., Brünker, P. & Umaña, P. The carbohydrate at FcγRIIIa Asn-162. An element required for high affinity binding to non-fucosylated IgG glycoforms. J. Biol. Chem. 281, 5032–5036 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harbison, A. & Fadda, E. An atomistic perspective on antibody-dependent cellular cytotoxicity quenching by core-fucosylation of IgG1 Fc N-glycans from enhanced sampling molecular dynamics. Glycobiology 30, 407–414 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Bruggeman, C. W. et al. Enhanced effector functions due to antibody defucosylation depend on the effector cell Fcγ receptor profile. J. Immunol. 199, 204–211 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iida, S. et al. Nonfucosylated therapeutic IgG1 antibody can evade the inhibitory effect of serum immunoglobulin G on antibody-dependent cellular cytotoxicity through its high binding to FcγRIIIa. Clin. Cancer Res. 12, 2879–2887 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kanda, Y. et al. Comparison of biological activity among nonfucosylated therapeutic IgG1 antibodies with three different N-linked Fc oligosaccharides: the high-mannose, hybrid, and complex types. Glycobiology 17, 104–118 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Okazaki, A. et al. Fucose depletion from human IgG1 oligosaccharide enhances binding enthalpy and association rate between IgG1 and FcγRIIIa. J. Mol. Biol. 336, 1239–1249 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nagelkerke, S. Q. et al. Inhibition of FcγR-mediated phagocytosis by IVIg is independent of IgG-Fc sialylation and FcγRIIb in human macrophages. Blood 124, 3709–3718 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bologna, L. et al. Mechanism of action of type II, glycoengineered, anti-CD20 monoclonal antibody GA101 in B-chronic lymphocytic leukemia whole blood assays in comparison with rituximab and alemtuzumab. J. Immunol. 186, 3762–3769 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Niwa, R. et al. IgG subclass-independent improvement of antibody-dependent cellular cytotoxicity by fucose removal from Asn297-linked oligosaccharides. J. Immunol. Methods 306, 151–160 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kapur, R. et al. Low anti-RhD IgG-Fc-fucosylation in pregnancy: a new variable predicting severity in haemolytic disease of the fetus and newborn. Br. J. Haematol. 166, 936–945 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sibéril, S. et al. Selection of a human anti-RhD monoclonal antibody for therapeutic use: impact of IgG glycosylation on activating and inhibitory FcγR functions. Clin. Immunol. 118, 170–179 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Sonneveld, M. E. et al. Antigen specificity determines anti-red blood cell IgG-Fc alloantibody glycosylation and thereby severity of haemolytic disease of the fetus and newborn. Br. J. Haematol. 176, 651–660 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shrivastava, A., Joshi, S., Guttman, A. & Rathore, A. S. N-glycosylation of monoclonal antibody therapeutics: a comprehensive review on significance and characterization. Anal. Chim. Acta 1209, 339828 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McHugh, J. Glycoengineering has therapeutic potential. Nat. Rev. Rheumatol. 14, 121–121 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Pereira, N. A., Chan, K. F., Lin, P. C. & Song, Z. The ‘less-is-more’ in therapeutic antibodies: afucosylated anti-cancer antibodies with enhanced antibody-dependent cellular cytotoxicity. MAbs 10, 693–711 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goede, V. et al. Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N. Engl. J. Med. 370, 1101–1110 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jefferis, R. Glycosylation as a strategy to improve antibody-based therapeutics. Nat. Rev. Drug. Discov. 8, 226–234 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fokkink, W. J. R. et al. Comparison of Fc N-glycosylation of pharmaceutical products of intravenous immunoglobulin G. PLoS One 10, e0139828 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pucić, M. et al. High throughput isolation and glycosylation analysis of IgG-variability and heritability of the IgG glycome in three isolated human populations. Mol. Cell Proteom. 10, M111.010090 (2011).

    Article 

    Google Scholar
     

  • Schuster, M. et al. Improved effector functions of a therapeutic monoclonal Lewis Y-specific antibody by glycoform engineering. Cancer Res. 65, 7934–7941 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Benedetti, E. et al. Network inference from glycoproteomics data reveals new reactions in the IgG glycosylation pathway. Nat. Commun. 8, 1483 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Umaña, P., Jean-Mairet, J., Moudry, R., Amstutz, H. & Bailey, J. E. Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat. Biotechnol. 17, 176–180 (1999).

    Article 
    PubMed 

    Google Scholar
     

  • Hodoniczky, J., Zheng, Y. Z. & James, D. C. Control of recombinant monoclonal antibody effector functions by Fc N-glycan remodeling in vitro. Biotechnol. Prog. 21, 1644–1652 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zou, G. et al. Chemoenzymatic synthesis and Fcγ receptor binding of homogeneous glycoforms of antibody Fc domain. Presence of a bisecting sugar moiety enhances the affinity of Fc to FcγIIIa receptor. J. Am. Chem. Soc. 133, 18975–18991 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lifely, M. R., Hale, C., Boyce, S., Keen, M. J. & Phillips, J. Glycosylation and biological activity of CAMPATH-1H expressed in different cell lines and grown under different culture conditions. Glycobiology 5, 813–822 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, L. L. et al. A functional role for antibodies in tuberculosis. Cell 167, 433–443.e14 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pilkington, C., Basaran, M., Barlan, I., Costello, A. M. & Rook, G. A. Raised levels of agalactosyl IgG in childhood tuberculosis. Trans. R. Soc. Trop. Med. Hyg. 90, 167–168 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pilkington, C., Yeung, E., Isenberg, D., Lefvert, A. K. & Rook, G. A. Agalactosyl IgG and antibody specificity in rheumatoid arthritis, tuberculosis, systemic lupus erythematosus and myasthenia gravis. Autoimmunity 22, 107–111 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sjöwall, C. et al. Altered glycosylation of complexed native IgG molecules is associated with disease activity of systemic lupus erythematosus. Lupus 24, 569–581 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Tomana, M., Schrohenloher, R. E., Reveille, J. D., Arnett, F. C. & Koopman, W. J. Abnormal galactosylation of serum IgG in patients with systemic lupus erythematosus and members of families with high frequency of autoimmune diseases. Rheumatol. Int. 12, 191–194 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gudelj, I. et al. Low galactosylation of IgG associates with higher risk for future diagnosis of rheumatoid arthritis during 10 years of follow-up. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 2034–2039 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gińdzieńska-Sieśkiewicz, E. et al. Changes of glycosylation of IgG in rheumatoid arthritis patients treated with methotrexate. Adv. Med. Sci. 61, 193–197 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • van de Geijn, F. E. et al. Immunoglobulin G galactosylation and sialylation are associated with pregnancy-induced improvement of rheumatoid arthritis and the postpartum flare: results from a large prospective cohort study. Arthritis Res. Ther. 11, R193 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ercan, A. et al. Aberrant IgG galactosylation precedes disease onset, correlates with disease activity, and is prevalent in autoantibodies in rheumatoid arthritis. Arthritis Rheum. 62, 2239–2248 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rombouts, Y. et al. Anti-citrullinated protein antibodies acquire a pro-inflammatory Fc glycosylation phenotype prior to the onset of rheumatoid arthritis. Ann. Rheum. Dis. 74, 234–241 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dubé, R. et al. Agalactosyl IgG in inflammatory bowel disease: correlation with C-reactive protein. Gut 31, 431–434 (1990).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Šimurina, M. et al. Glycosylation of immunoglobulin G associates with clinical features of inflammatory bowel diseases. Gastroenterology 154, 1320–1333.e10 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Trbojević Akmačić, I. et al. Inflammatory bowel disease associates with proinflammatory potential of the immunoglobulin G glycome. Inflamm. Bowel Dis. 21, 1237–1247 (2015).

    PubMed 

    Google Scholar
     

  • Nakajima, S. et al. Functional analysis of agalactosyl IgG in inflammatory bowel disease patients. Inflamm. Bowel Dis. 17, 927–936 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Bond, A. et al. A detailed lectin analysis of IgG glycosylation, demonstrating disease specific changes in terminal galactose and N-acetylglucosamine. J. Autoimmun. 10, 77–85 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bond, A., Alavi, A., Axford, J. S., Youinou, P. & Hay, F. C. The relationship between exposed galactose and N-acetylglucosamine residues on IgG in rheumatoid arthritis (RA), juvenile chronic arthritis (JCA) and Sjögren’s syndrome (SS). Clin. Exp. Immunol. 105, 99–103 (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kemna, M. J. et al. Galactosylation and sialylation levels of IgG predict relapse in patients with PR3-ANCA associated vasculitis. EBioMedicine 17, 108–118 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holland, M. et al. Hypogalactosylation of serum IgG in patients with ANCA-associated systemic vasculitis. Clin. Exp. Immunol. 129, 183–190 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holland, M. et al. Differential glycosylation of polyclonal IgG, IgG-Fc and IgG-Fab isolated from the sera of patients with ANCA-associated systemic vasculitis. Biochim. Biophys. Acta 1760, 669–677 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Selman, M. H. J. et al. IgG fc N-glycosylation changes in Lambert-Eaton myasthenic syndrome and myasthenia gravis. J. Proteome Res. 10, 143–152 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fokkink, W.-J. R. et al. IgG Fc N-glycosylation in Guillain-Barré syndrome treated with immunoglobulins. J. Proteome Res. 13, 1722–1730 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moore, J. S. et al. Increased levels of galactose-deficient IgG in sera of HIV-1-infected individuals. AIDS 19, 381–389 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ackerman, M. E. et al. Natural variation in Fc glycosylation of HIV-specific antibodies impacts antiviral activity. J. Clin. Invest. 123, 2183–2192 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vaccari, M. et al. Adjuvant-dependent innate and adaptive immune signatures of risk of SIVmac251 acquisition. Nat. Med. 22, 762–770 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ho, C.-H. et al. Aberrant serum immunoglobulin G glycosylation in chronic hepatitis B is associated with histological liver damage and reversible by antiviral therapy. J. Infect. Dis. 211, 115–124 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mehta, A. S. et al. Increased levels of galactose-deficient anti-Gal immunoglobulin G in the sera of hepatitis C virus-infected individuals with fibrosis and cirrhosis. J. Virol. 82, 1259–1270 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boyd, P. N., Lines, A. C. & Patel, A. K. The effect of the removal of sialic acid, galactose and total carbohydrate on the functional activity of Campath-1H. Mol. Immunol. 32, 1311–1318 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peschke, B., Keller, C. W., Weber, P., Quast, I. & Lünemann, J. D. Fc-Galactosylation of human immunoglobulin gamma isotypes improves C1q binding and enhances complement-dependent cytotoxicity. Front. Immunol. 8, 646 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malhotra, R. et al. Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nat. Med. 1, 237–243 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dekkers, G., Rispens, T. & Vidarsson, G. Novel concepts of altered immunoglobulin G galactosylation in autoimmune diseases. Front. Immunol. 9, 553 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsuchiya, N. et al. Effects of galactose depletion from oligosaccharide chains on immunological activities of human IgG. J. Rheumatol. 16, 285–290 (1989).

    CAS 
    PubMed 

    Google Scholar
     

  • Yamaguchi, Y. et al. Glycoform-dependent conformational alteration of the Fc region of human immunoglobulin G1 as revealed by NMR spectroscopy. Biochim. Biophys. Acta Gen. Subj. 1760, 693–700 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Kiyoshi, M., Tsumoto, K., Ishii-Watabe, A. & Caaveiro, J. M. M. Glycosylation of IgG-Fc: a molecular perspective. Int. Immunol. 29, 311–317 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nimmerjahn, F., Anthony, R. M. & Ravetch, J. V. Agalactosylated IgG antibodies depend on cellular Fc receptors for in vivo activity. Proc. Natl Acad. Sci. USA 104, 8433–8437 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van de Geijn, F. E. et al. Mannose-binding lectin polymorphisms are not associated with rheumatoid arthritis — confirmation in two large cohorts. Rheumatology 47, 1168–1171 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • van de Geijn, F. E. et al. Mannose-binding lectin does not explain the course and outcome of pregnancy in rheumatoid arthritis. Arthritis Res. Ther. 13, R10 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karsten, C. M. et al. Anti-inflammatory activity of IgG1 mediated by Fc galactosylation and association of FcγRIIB and dectin-1. Nat. Med. 18, 1401–1406 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heyl, K. A., Karsten, C. M. & Slevogt, H. Galectin-3 binds highly galactosylated IgG1 and is crucial for the IgG1 complex mediated inhibition of C5aReceptor induced immune responses. Biochem. Biophys. Res. Commun. 479, 86–90 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamada, K. et al. Galactosylation of IgG1 modulates FcγRIIB-mediated inhibition of murine autoimmune hemolytic anemia. J. Autoimmun. 47, 104–110 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Houde, D., Peng, Y., Berkowitz, S. A. & Engen, J. R. Post-translational modifications differentially affect IgG1 conformation and receptor binding. Mol. Cell Proteom. 9, 1716–1728 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Kumpel, B. M., Rademacher, T. W., Rook, G. A., Williams, P. J. & Wilson, I. B. Galactosylation of human IgG monoclonal anti-D produced by EBV-transformed B-lymphoblastoid cell lines is dependent on culture method and affects Fc receptor-mediated functional activity. Hum. Antibodies Hybrid. 5, 143–151 (1994).

    CAS 

    Google Scholar
     

  • Kumpel, B. M., Wang, Y., Griffiths, H. L., Hadley, A. G. & Rook, G. A. The biological activity of human monoclonal IgG anti-D is reduced by β-galactosidase treatment. Hum. Antibodies Hybrid. 6, 82–88 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Thomann, M., Reckermann, K., Reusch, D., Prasser, J. & Tejada, M. L. Fc-galactosylation modulates antibody-dependent cellular cytotoxicity of therapeutic antibodies. Mol. Immunol. 73, 69–75 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thomann, M. et al. In vitro glycoengineering of IgG1 and its effect on Fc receptor binding and ADCC activity. PLoS One 10, e0134949 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaneko, Y., Nimmerjahn, F. & Ravetch, J. V. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 313, 670–673 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, T. et al. Modulating IgG effector function by Fc glycan engineering. Proc. Natl Acad. Sci. USA 114, 3485–3490 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scallon, B. J., Tam, S. H., McCarthy, S. G., Cai, A. N. & Raju, T. S. Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality. Mol. Immunol. 44, 1524–1534 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kissel, T. et al. IgG anti-citrullinated protein antibody variable domain glycosylation increases before the onset of rheumatoid arthritis and stabilizes thereafter: a cross-sectional study encompassing ~1,500 samples. Arthritis Rheumatol. 74, 1147–1158 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Axford, J. S. et al. Changes in normal glycosylation mechanisms in autoimmune rheumatic disease. J. Clin. Invest. 89, 1021–1031 (1992).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bondt, A. et al. Association between galactosylation of immunoglobulin G and improvement of rheumatoid arthritis during pregnancy is independent of sialylation. J. Proteome Res. 12, 4522–4531 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van Timmeren, M. M. et al. IgG glycan hydrolysis attenuates ANCA-mediated glomerulonephritis. J. Am. Soc. Nephrol. 21, 1103–1114 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wuhrer, M. et al. Skewed Fc glycosylation profiles of anti-proteinase 3 immunoglobulin G1 autoantibodies from granulomatosis with polyangiitis patients show low levels of bisection, galactosylation, and sialylation. J. Proteome Res. 14, 1657–1665 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tingting, L. et al. Characteristics of purified Anti-β2GPI IgG N-glycosylation associate with thrombotic, obstetric, and catastrophic antiphospholipid syndrome. Rheumatology 61, 1243–1254 (2021).


    Google Scholar
     

  • Aurer, I. et al. Aberrant glycosylation of Igg heavy chain in multiple myeloma. Coll. Antropol. 31, 247–251 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Bosseboeuf, A. et al. Analysis of the targets and glycosylation of monoclonal IgAs From MGUS and myeloma patients. Front. Immunol. 11, 854 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mittermayr, S. et al. Polyclonal immunoglobulin G N-glycosylation in the pathogenesis of plasma cell disorders. J. Proteome Res. 16, 748–762 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, G. et al. Human IgG Fc-glycosylation profiling reveals associations with age, sex, female sex hormones and thyroid cancer. J. Proteom. 75, 2824–2834 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Kanoh, Y., Ohara, T., Tadano, T., Kanoh, M. & Akahoshi, T. Changes to N-linked oligosaccharide chains of human serum immunoglobulin G and matrix metalloproteinase-2 with cancer progression. Anticancer. Res. 28, 715–720 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Kanoh, Y. et al. Analysis of the oligosaccharide chain of human serum immunoglobulin G in patients with localized or metastatic cancer. Oncology 66, 365–370 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anthony, R. M. et al. Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science 320, 373–376 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Washburn, N. et al. Controlled tetra-Fc sialylation of IVIg results in a drug candidate with consistent enhanced anti-inflammatory activity. Proc. Natl Acad. Sci. USA 112, E1297–E1306 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anthony, R. M., Wermeling, F., Karlsson, M. C. I. & Ravetch, J. V. Identification of a receptor required for the anti-inflammatory activity of IVIG. Proc. Natl Acad. Sci. USA 105, 19571–19578 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bruhns, P., Samuelsson, A., Pollard, J. W. & Ravetch, J. V. Colony-stimulating factor-1-dependent macrophages are responsible for IVIG protection in antibody-induced autoimmune disease. Immunity 18, 573–581 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anthony, R. M., Kobayashi, T., Wermeling, F. & Ravetch, J. V. Intravenous gammaglobulin suppresses inflammation through a novel TH2 pathway. Nature 475, 110–113 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siragam, V. et al. Intravenous immunoglobulin ameliorates ITP via activating Fcγ receptors on dendritic cells. Nat. Med. 12, 688–692 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guhr, T. et al. Enrichment of sialylated IgG by lectin fractionation does not enhance the efficacy of immunoglobulin G in a murine model of immune thrombocytopenia. PLoS One 6, e21246 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campbell, I. K. et al. Therapeutic effect of IVIG on inflammatory arthritis in mice is dependent on the Fc portion and independent of sialylation or basophils. J. Immunol. 192, 5031–5038 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leontyev, D. et al. Sialylation-independent mechanism involved in the amelioration of murine immune thrombocytopenia using intravenous gammaglobulin. Transfusion 52, 1799–1805 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Käsermann, F. et al. Analysis and functional consequences of increased Fab-sialylation of intravenous immunoglobulin (IVIG) after lectin fractionation. PLoS One 7, e37243 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • von Gunten, S. et al. IVIG pluripotency and the concept of Fc-sialylation: challenges to the scientist. Nat. Rev. Immunol. 14, 349 (2014).

    Article 

    Google Scholar
     

  • Tjon, A. S. W. et al. Intravenous immunoglobulin treatment in humans suppresses dendritic cell function via stimulation of IL-4 and IL-13 production. J. Immunol. 192, 5625–5634 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharma, M. et al. Intravenous immunoglobulin-induced IL-33 is insufficient to mediate basophil expansion in autoimmune patients. Sci. Rep. 4, 5672 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siedlar, M. et al. Preparations of intravenous immunoglobulins diminish the number and proinflammatory response of CD14+ CD16++ monocytes in common variable immunodeficiency (CVID) patients. Clin. Immunol. 139, 122–132 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ichiyama, T. et al. Intravenous immunoglobulin does not increase FcγRIIB expression on monocytes/macrophages during acute Kawasaki disease. Rheumatology 44, 314–317 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shimomura, M. et al. Intravenous immunoglobulin does not increase FcγRIIB expression levels on monocytes in children with immune thrombocytopenia. Clin. Exp. Immunol. 169, 33–37 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Temming, A. R. et al. Human DC-SIGN and CD23 do not interact with human IgG. Sci. Rep. 9, 10 (2019).

    Article 

    Google Scholar
     

  • Yu, X. et al. Engineering hydrophobic protein-carbohydrate interactions to fine-tune monoclonal antibodies. J. Am. Chem. Soc. 135, 9723–9732 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raju, T. S. Terminal sugars of Fc glycans influence antibody effector functions of IgGs. Curr. Opin. Immunol. 20, 471–478 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crispin, M., Yu, X. & Bowden, T. A. Crystal structure of sialylated IgG Fc: implications for the mechanism of intravenous immunoglobulin therapy. Proc. Natl Acad. Sci. USA 110, E3544–3546 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang, J., Richardson, J., Du, Z. & Zhang, Z. Effect of Fc-glycan structure on the conformational stability of IgG revealed by hydrogen/deuterium exchange and limited proteolysis. Biochemistry 55, 860–868 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barb, A. W. et al. NMR characterization of immunoglobulin G Fc glycan motion on enzymatic sialylation. Biochemistry 51, 4618–4626 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Z., Shah, B. & Richardson, J. Impact of Fc N-glycan sialylation on IgG structure. MAbs 11, 1381–1390 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Powell, L. D., Sgroi, D., Sjoberg, E. R., Stamenkovic, I. & Varki, A. Natural ligands of the B cell adhesion molecule CD22β carry N-linked oligosaccharides with ɑ-2,6-linked sialic acids that are required for recognition. J. Biol. Chem. 268, 7019–7027 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Massoud, A. H. et al. Dendritic cell immunoreceptor: a novel receptor for intravenous immunoglobulin mediates induction of regulatory T cells. J. Allergy Clin. Immunol. 133, 853–863.e5 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Séïté, J.-F. et al. IVIg modulates BCR signaling through CD22 and promotes apoptosis in mature human B lymphocytes. Blood 116, 1698–1704 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, T. T. et al. Anti-HA glycoforms drive B cell affinity selection and determine influenza vaccine efficacy. Cell 162, 160–169 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quast, I. et al. Sialylation of IgG Fc domain impairs complement-dependent cytotoxicity. J. Clin. Invest. 125, 4160–4170 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wallick, S. C., Kabat, E. A. & Morrison, S. L. Glycosylation of a VH residue of a monoclonal antibody against alpha (1–6) dextran increases its affinity for antigen. J. Exp. Med. 168, 1099–1109 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tachibana, H., Kim, J. Y. & Shirahata, S. Building high affinity human antibodies by altering the glycosylation on the light chain variable region in N-acetylglucosamine-supplemented hybridoma cultures. Cytotechnology 23, 151–159 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leibiger, H., Wüstner, D., Stigler, R. D. & Marx, U. Variable domain-linked oligosaccharides of a human monoclonal IgG: structure and influence on antigen binding. Biochem. J. 338, 529–538 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wright, A., Tao, M. H., Kabat, E. A. & Morrison, S. L. Antibody variable region glycosylation: position effects on antigen binding and carbohydrate structure. EMBO J. 10, 2717–2723 (1991).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bondt, A., Wuhrer, M., Kuijper, T. M., Hazes, J. M. W. & Dolhain, R. J. E. M. Fab glycosylation of immunoglobulin G does not associate with improvement of rheumatoid arthritis during pregnancy. Arthritis Res. Ther. 18, 274 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hafkenscheid, L. et al. N-linked glycans in the variable domain of IgG anti-citrullinated protein antibodies predict the development of rheumatoid arthritis. Arthritis Rheumatol. 71, 1626–1633 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lardinois, O. M. et al. Immunoglobulins G from patients with ANCA-associated vasculitis are atypically glycosylated in both the Fc and Fab regions and the relation to disease activity. PLoS One 14, e0213215 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van de Bovenkamp, F. S., Hafkenscheid, L., Rispens, T. & Rombouts, Y. The emerging importance of IgG fab glycosylation in immunity. J. Immunol. 196, 1435–1441 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Xu, P.-C. et al. Influence of variable domain glycosylation on anti-neutrophil cytoplasmic autoantibodies and anti-glomerular basement membrane autoantibodies. BMC Immunol. 13, 10 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coelho, V. et al. Glycosylation of surface Ig creates a functional bridge between human follicular lymphoma and microenvironmental lectins. Proc. Natl Acad. Sci. USA 107, 18587–18592 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schneider, D. et al. Lectins from opportunistic bacteria interact with acquired variable-region glycans of surface immunoglobulin in follicular lymphoma. Blood 125, 3287–3296 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wong, K. L. et al. SM03, an znti-CD22 antibody, converts cis-to-trans ligand binding of CD22 against α2,6-linked sialic acid glycans and immunomodulates systemic autoimmune diseases. J. Immunol. 208, 2726–2737 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chiodin, G. et al. Insertion of atypical glycans into the tumor antigen-binding site identifies DLBCLs with distinct origin and behavior. Blood 138, 1570–1582 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Menni, C. et al. Glycosylation of immunoglobulin g: role of genetic and epigenetic influences. PLoS One 8, e82558 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Datta, A. K., Sinha, A. & Paulson, J. C. Mutation of the sialyltransferase S-sialylmotif alters the kinetics of the donor and acceptor substrates. J. Biol. Chem. 273, 9608–9614 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lauc, G. et al. Loci associated with N-glycosylation of human immunoglobulin G show pleiotropy with autoimmune diseases and haematological cancers. PLoS Genet. 9, e1003225 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shadrina, A. S. et al. Multivariate genome-wide analysis of immunoglobulin G N-glycosylation identifies new loci pleiotropic with immune function. Hum. Mol. Genet. 30, 1259–1270 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wahl, A. et al. Genome-wide association study on immunoglobulin G glycosylation patterns. Front. Immunol. 9, 277 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Whiteman, H. J. & Farrell, P. J. RUNX expression and function in human B cells. Crit. Rev. Eukaryot. Gene Expr. 16, 31–44 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Niebuhr, B. et al. Runx1 is essential at two stages of early murine B-cell development. Blood 122, 413–423 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sellars, M., Reina-San-Martin, B., Kastner, P. & Chan, S. Ikaros controls isotype selection during immunoglobulin class switch recombination. J. Exp. Med. 206, 1073–1087 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bondt, A. et al. ACPA IgG galactosylation associates with disease activity in pregnant patients with rheumatoid arthritis. Ann. Rheum. Dis. 77, 1130–1136 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Pekelharing, J. M., Hepp, E., Kamerling, J. P., Gerwig, G. J. & Leijnse, B. Alterations in carbohydrate composition of serum IgG from patients with rheumatoid arthritis and from pregnant women. Ann. Rheum. Dis. 47, 91–95 (1988).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rook, G. A. et al. Changes in IgG glycoform levels are associated with remission of arthritis during pregnancy. J. Autoimmun. 4, 779–794 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krištić, J. et al. Glycans are a novel biomarker of chronological and biological ages. J. Gerontol. A Biol. Sci. Med. Sci. 69, 779–789 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Ercan, A. et al. Estrogens regulate glycosylation of IgG in women and men. JCI Insight 2, e89703 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Engdahl, C. et al. Estrogen induces St6gal1 expression and increases IgG sialylation in mice and patients with rheumatoid arthritis: a potential explanation for the increased risk of rheumatoid arthritis in postmenopausal women. Arthritis Res. Ther. 20, 84 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du, N. et al. Phytoestrogens protect joints in collagen induced arthritis by increasing IgG glycosylation and reducing osteoclast activation. Int. Immunopharmacol. 83, 106387 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dall’Olio, F., Malagolini, N. & Immunoglobulin, G. Glycosylation changes in aging and other inflammatory conditions. Exp. Suppl. 112, 303–340 (2021).

    PubMed 

    Google Scholar
     

  • Dall’Olio, F. et al. N-glycomic biomarkers of biological aging and longevity: a link with inflammaging. Ageing Res. Rev. 12, 685–698 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Parekh, R., Roitt, I., Isenberg, D., Dwek, R. & Rademacher, T. Age-related galactosylation of the N-linked oligosaccharides of human serum IgG. J. Exp. Med. 167, 1731–1736 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Knezevic, A. et al. Effects of aging, body mass index, plasma lipid profiles, and smoking on human plasma N-glycans. Glycobiology 20, 959–969 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Haan, N., Reiding, K. R., Driessen, G., van der Burg, M. & Wuhrer, M. Changes in healthy human IgG Fc-glycosylation after birth and during early childhood. J. Proteome Res. 15, 1853–1861 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Pucic, M. et al. Changes in plasma and IgG N-glycome during childhood and adolescence. Glycobiology 22, 975–982 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamada, E., Tsukamoto, Y., Sasaki, R., Yagyu, K. & Takahashi, N. Structural changes of immunoglobulin G oligosaccharides with age in healthy human serum. Glycoconj. J. 14, 401–405 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vanhooren, V. et al. N-glycomic changes in serum proteins during human aging. Rejuvenation Res. 10, 521–531a (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Yu, X. et al. Profiling IgG N-glycans as potential biomarker of chronological and biological ages: a community-based study in a Han Chinese population. Medicine 95, e4112 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Batten, M. et al. IL-27 supports germinal center function by enhancing IL-21 production and the function of T follicular helper cells. J. Exp. Med. 207, 2895–2906 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bartsch, Y. C. et al. Sialylated autoantigen-reactive IgG antibodies attenuate disease development in autoimmune mouse models of lupus nephritis and rheumatoid arthritis. Front. Immunol. 9, 1183 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hess, C. et al. T cell-independent B cell activation induces immunosuppressive sialylated IgG antibodies. J. Clin. Invest. 123, 3788–3796 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bartsch, Y. C. et al. IgG Fc sialylation is regulated during the germinal center reaction following immunization with different adjuvants. J. Allergy Clin. Immunol. 146, 652–666.e11 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pfeifle, R. et al. Regulation of autoantibody activity by the IL-23-TH17 axis determines the onset of autoimmune disease. Nat. Immunol. 18, 104–113 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cardenas, A. et al. Plasma concentrations of per- and polyfluoroalkyl substances at baseline and associations with glycemic indicators and diabetes incidence among high-risk adults in the diabetes prevention program trial. Env. Health Perspect. 125, 107001 (2017).

    Article 

    Google Scholar
     

  • Zhou, W. et al. Plasma perfluoroalkyl and polyfluoroalkyl substances concentration and menstrual cycle characteristics in preconception women. Env. Health Perspect. 125, 067012 (2017).

    Article 

    Google Scholar
     

  • Fletcher, T. et al. Associations between PFOA, PFOS and changes in the expression of genes involved in cholesterol metabolism in humans. Env. Int. 57–58, 2–10 (2013).

    Article 

    Google Scholar
     

  • Siebenaler, R. et al. Serum perfluoroalkyl acids (PFAAs) and associations with behavioral attributes. Chemosphere 184, 687–693 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, J. et al. Associations between the serum levels of PFOS/PFOA and IgG N-glycosylation in adult or children. Environ. Pollut. 265, 114285 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Birukov, A. et al. Immunoglobulin G N-glycosylation signatures in incident type 2 diabetes and cardiovascular disease. Diabetes Care 45, 2729–2736 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lemmers, R. F. H. et al. IgG glycan patterns are associated with type 2 diabetes in independent European populations. Biochim. Biophys. Acta Gen. Subj. 1861, 2240–2249 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh, S. S. et al. Association of the IgG N-glycome with the course of kidney function in type 2 diabetes. BMJ Open. Diabetes Res. Care 8, e001026 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, H. et al. Leveraging IgG N-glycosylation to infer the causality between T2D and hypertension. Diabetol. Metab. Syndr. 15, 80 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Z. et al. Variation of IgG N-linked glycosylation profile in diabetic retinopathy. J. Diabetes 13, 672–680 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nikolac Perkovic, M. et al. The association between galactosylation of immunoglobulin G and body mass index. Prog. Neuropsychopharmacol. Biol. Psychiatry 48, 20–25 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Russell, A. C. et al. Increased central adiposity is associated with pro-inflammatory immunoglobulin G N-glycans. Immunobiology 224, 110–115 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Greto, V. L. et al. Extensive weight loss reduces glycan age by altering IgG N-glycosylation. Int. J. Obes. 45, 1521–1531 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kifer, D. et al. N-glycosylation of immunoglobulin G predicts incident hypertension. J. Hypertens. 39, 2527–2533 (2021).

  • Liu, J. N. et al. The association between subclass-specific IgG Fc N-glycosylation profiles and hypertension in the Uygur, Kazak, Kirgiz, and Tajik populations. J. Hum. Hypertens. 32, 555–563 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meng, X. et al. Glycosylation of IgG associates with hypertension and type 2 diabetes mellitus comorbidity in the Chinese Muslim ethnic minorities and the Han Chinese. J. Pers. Med. 11, 614 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. et al. The association between glycosylation of immunoglobulin G and hypertension: a multiple ethnic cross-sectional study. Medicine 95, e3379 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, D. et al. The changes of immunoglobulin G N-glycosylation in blood lipids and dyslipidaemia. J. Transl. Med. 16, 235 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Menni, C. et al. Glycosylation profile of immunoglobulin G is cross-sectionally associated with cardiovascular disease risk score and subclinical atherosclerosis in two independent cohorts. Circ. Res. 122, 1555–1564 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rudman, N. et al. Children at onset of type 1 diabetes show altered N-glycosylation of plasma proteins and IgG. Diabetologia 65, 1315–1327 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Colombo, M. et al. Quantitative levels of serum N-glycans in type 1 diabetes and their association with kidney disease. Glycobiology 31, 613–623 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rook, G. A. et al. A longitudinal study of per cent agalactosyl IgG in tuberculosis patients receiving chemotherapy, with or without immunotherapy. Immunology 81, 149–154 (1994).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Larsen, M. D. et al. Afucosylated IgG characterizes enveloped viral responses and correlates with COVID-19 severity. Science 371, eabc8378 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Teo, A., Tan, H. D., Loy, T., Chia, P. Y. & Chua, C. L. L. Understanding antibody-dependent enhancement in dengue: are afucosylated IgG1s a concern? PLoS Pathog. 19, e1011223 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trzos, S., Link-Lenczowski, P. & Pocheć, E. The role of N-glycosylation in B-cell biology and IgG activity. The aspects of autoimmunity and anti-inflammatory therapy. Front. Immunol. 14, 1188838 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lundström, S. L. et al. IgG Fc galactosylation predicts response to methotrexate in early rheumatoid arthritis. Arthritis Res. Ther. 19, 182 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collins, E. S. et al. Glycosylation status of serum in inflammatory arthritis in response to anti-TNF treatment. Rheumatology 52, 1572–1582 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Croce, A. et al. Effect of infliximab on the glycosylation of IgG of patients with rheumatoid arthritis. J. Clin. Lab. Anal. 21, 303–314 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ercan, A. et al. Hypogalactosylation of serum N-glycans fails to predict clinical response to methotrexate and TNF inhibition in rheumatoid arthritis. Arthritis Res. Ther. 14, R43 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, J. et al. IgG Galactosylation status combined with MYOM2-rs2294066 precisely predicts anti-TNF response in ankylosing spondylitis. Mol. Med. 25, 25 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Font, G. et al. IgG N-glycosylation from patients with pemphigus treated with rituximab. Biomedicines 10, 1774 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmidt, D. E. et al. IgG-Fc glycosylation before and after rituximab treatment in immune thrombocytopenia. Sci. Rep. 10, 3051 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barrios, C. et al. Glycosylation profile of IgG in moderate kidney dysfunction. J. Am. Soc. Nephrol. 27, 933–941 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haddad & G et al. Altered glycosylation of IgG4 promotes lectin complement pathway activation in anti-PLA2R1-associated membranous nephropathy. J. Clin. Invest. 131, 140453 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Oskam, N. et al. Factors affecting IgG4-mediated complement activation. Front. Immunol. 14, 1087532 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chinello, C. et al. Definition of IgG subclass-specific glycopatterns in idiopathic membranous nephropathy: aberrant IgG glycoforms in blood. Int. J. Mol. Sci. 23, 4664 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Segelmark, M. & Wieslander, J. IgG subclasses of antineutrophil cytoplasm autoantibodies (ANCA). Nephrol. Dial. Transpl. 8, 696–702 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Espy, C. et al. Sialylation levels of anti-proteinase 3 antibodies are associated with the activity of granulomatosis with polyangiitis (Wegener’s). Arthritis Rheum. 63, 2105–2115 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shibuya, N. et al. The elderberry (Sambucus nigra L.) bark lectin recognizes the Neu5Ac(ɑ2-6)Gal/GalNAc sequence. J. Biol. Chem. 262, 1596–1601 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stadlmann, J. et al. A close look at human IgG sialylation and subclass distribution after lectin fractionation. Proteomics 9, 4143–4153 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dalziel, M., McFarlane, I. & Axford, J. S. Lectin analysis of human immunoglobulin G N-glycan sialylation. Glycoconj. J. 16, 801–807 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rademacher, T. W. Network theory of glycosylation — etiologic and pathogenic implications of changes in IgG glycoform levels in autoimmunity. Semin. Cell Biol. 2, 327–337 (1991).

    CAS 
    PubMed 

    Google Scholar
     

  • Magorivska, I. et al. Sialylation of anti-histone immunoglobulin G autoantibodies determines their capabilities to participate in the clearance of late apoptotic cells. Clin. Exp. Immunol. 184, 110–117 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, X. et al. Antibody glycosylation in autoimmune diseases. Autoimmun. Rev. 20, 102804 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Biermann, M. H. C. et al. Sweet but dangerous — the role of immunoglobulin G glycosylation in autoimmunity and inflammation. Lupus 25, 934–942 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vučković, F. et al. Association of systemic lupus erythematosus with decreased immunosuppressive potential of the IgG glycome. Arthritis Rheumatol. 67, 2978–2989 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, J. et al. Fucosylation of anti-dsDNA IgG1 correlates with disease activity of treatment-naïve systemic lupus erythematosus patients. eBioMedicine 77, 103883 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhargava, R. et al. Aberrantly glycosylated IgG elicits pathogenic signaling in podocytes and signifies lupus nephritis. JCI Insight 6, e147789 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clarke, J. Glycosylation influences IgG effects in LN. Nat. Rev. Rheumatol. 17, 310–310 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, X. et al. Association between immunoglobulin G N-glycosylation and lupus nephritis in female patients with systemic lupus erythematosus: a case-control study. Front. Immunol. 14, 1257906 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Egmond, M. et al. IgA and the IgA Fc receptor. Trends Immunol. 22, 205–211 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Novak, J., Julian, B. A., Mestecky, J. & Renfrow, M. B. Glycosylation of IgA1 and pathogenesis of IgA nephropathy. Semin. Immunopathol. 34, 365–382 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding, L., Chen, X., Cheng, H., Zhang, T. & Li, Z. Advances in IgA glycosylation and its correlation with diseases. Front. Chem. 10, 974854 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ohyama, Y., Renfrow, M. B., Novak, J. & Takahashi, K. Aberrantly glycosylated IgA1 in IgA nephropathy: what we know and what we don’t know. J. Clin. Med. 10, 3467 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Posgai, M. T. et al. FcαRI binding at the IgA1 CH2-CH3 interface induces long-range conformational changes that are transmitted to the hinge region. Proc. Natl Acad. Sci. USA 115, E8882–E8891 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Novak, J., Barratt, J., Julian, B. A. & Renfrow, M. B. Aberrant glycosylation of the IgA1 Molecule in IgA nephropathy. Semin. Nephrol. 38, 461–476 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suzuki, H. & Novak, J. IgA glycosylation and immune complex formation in IgAN. Semin. Immunopathol. 43, 669–678 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moldoveanu, Z. et al. Patients with IgA nephropathy have increased serum galactose-deficient IgA1 levels. Kidney Int. 71, 1148–1154 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berthoux, F. et al. Autoantibodies targeting galactose-deficient IgA1 associate with progression of IgA nephropathy. J. Am. Soc. Nephrol. 23, 1579–1587 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, N. et al. The level of galactose-deficient IgA1 in the sera of patients with IgA nephropathy is associated with disease progression. Kidney Int. 82, 790–796 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suzuki, H. et al. Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J. Clin. Invest. 119, 1668–1677 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pattrapornpisut, P., Avila-Casado, C. & Reich, H. N. IgA nephropathy: core curriculum 2021. Am. J. Kidney Dis. 78, 429–441 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Knoppova, B. et al. Pathogenesis of IgA nephropathy: current understanding and implications for development of disease-specific treatment. J. Clin. Med. 10, 4501 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X. et al. Poly-IgA complexes and disease severity in IgA nephropathy. Clin. J. Am. Soc. Nephrol. 16, 1652–1664 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Placzek, W. J. et al. Serum galactose-deficient-IgA1 and IgG autoantibodies correlate in patients with IgA nephropathy. PLoS One 13, e0190967 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maixnerova, D. et al. Galactose-deficient IgA1 and the corresponding IgG autoantibodies predict IgA nephropathy progression. PLoS One 14, e0212254 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Medrano, A. S. et al. Relationship between immunoglobulin A1 lectin-binding specificities, mesangial C4d deposits and clinical phenotypes in immunoglobulin A nephropathy. Nephrol. Dial. Transpl. 37, 318–325 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chen, P. et al. Plasma galactose-deficient IgA1 and C3 and CKD progression in IgA nephropathy. Clin. J. Am. Soc. Nephrol. 14, 1458–1465 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang, Y. et al. Proliferation and cytokine production of human mesangial cells stimulated by secretory IgA isolated from patients with IgA nephropathy. Cell Physiol. Biochem. 36, 1793–1808 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, J. et al. Role of human mesangial-tubular crosstalk in secretory IgA-induced IgA nephropathy. Kidney Blood Press. Res. 46, 286–297 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amore, A. et al. Aberrantly glycosylated IgA molecules downregulate the synthesis and secretion of vascular endothelial growth factor in human mesangial cells. Am. J. Kidney Dis. 36, 1242–1252 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Person, T. et al. Cytokines and production of aberrantly O-glycosylated IgA1, the main autoantigen in IgA nephropathy. J. Interferon Cytokine Res. 42, 301–315 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lechner, S. M., Papista, C., Chemouny, J. M., Berthelot, L. & Monteiro, R. C. Role of IgA receptors in the pathogenesis of IgA nephropathy. J. Nephrol. 29, 5–11 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jhee, J. H. et al. CD71 mesangial IgA1 receptor and the progression of IgA nephropathy. Transl. Res. 230, 34–43 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cambier, A. et al. Soluble CD89 is a critical factor for mesangial proliferation in childhood IgA nephropathy. Kidney Int. 101, 274–287 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wyatt, R. J. & Julian, B. A. IgA nephropathy. N. Engl. J. Med. 368, 2402–2414 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Steffen, U. et al. IgA subclasses have different effector functions associated with distinct glycosylation profiles. Nat. Commun. 11, 120 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pillebout, E. et al. Biomarkers of IgA vasculitis nephritis in children. PLoS One 12, e0188718 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, Y. et al. Pathogenesis of IgA vasculitis: an up-to-date review. Front. Immunol. 12, 771619 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sugiyama, M. et al. A cross-sectional analysis of clinicopathologic similarities and differences between Henoch-Schönlein purpura nephritis and IgA nephropathy. PLoS One 15, e0232194 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haniuda, K., Gommerman, J. L. & Reich, H. N. The microbiome and IgA nephropathy. Semin. Immunopathol. 43, 649–656 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Novak, J., Julian, B. A., Tomana, M. & Mestecky, J. IgA glycosylation and IgA immune complexes in the pathogenesis of IgA nephropathy. Semin. Nephrol. 28, 78–87 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, A. C., Molyneux, K., Feehally, J. & Barratt, J. O-glycosylation of serum IgA1 antibodies against mucosal and systemic antigens in IgA nephropathy. J. Am. Soc. Nephrol. 17, 3520–3528 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gale, D. P. et al. Galactosylation of IgA1 is associated with common variation in C1GALT1. J. Am. Soc. Nephrol. 28, 2158–2166 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xing, Y. et al. C1GALT1 expression is associated with galactosylation of IgA1 in peripheral B lymphocyte in immunoglobulin a nephropathy. BMC Nephrol. 21, 18 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sellarés, J. et al. Understanding the causes of kidney transplant failure: the dominant role of antibody-mediated rejection and nonadherence. Am. J. Transplant. 12, 388–399 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Roufosse, C. et al. A 2018 reference guide to the Banff Classification of Renal Allograft Pathology. Transplantation 102, 1795–1814 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haas, M. et al. The Banff 2017 Kidney Meeting Report: revised diagnostic criteria for chronic active T cell-mediated rejection, antibody-mediated rejection, and prospects for integrative endpoints for next-generation clinical trials. Am. J. Transplant. 18, 293–307 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loupy, A., Hill, G. S. & Jordan, S. C. The impact of donor-specific anti-HLA antibodies on late kidney allograft failure. Nat. Rev. Nephrol. 8, 348–357 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lefaucheur, C. et al. Preexisting donor-specific HLA antibodies predict outcome in kidney transplantation. J. Am. Soc. Nephrol. 21, 1398–1406 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Everly, M. J. et al. Impact of IgM and IgG3 anti-HLA alloantibodies in primary renal allograft recipients. Transplantation 97, 494–501 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Hamdani, G. et al. IGG3 anti-HLA donor-specific antibodies and graft function in pediatric kidney transplant recipients. Pediatr. Transpl. 22, e13219 (2018).

    Article 

    Google Scholar
     

  • Lefaucheur, C. et al. IgG donor-specific anti-human HLA antibody subclasses and kidney allograft antibody-mediated injury. J. Am. Soc. Nephrol. 27, 293–304 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pernin, V. et al. IgG3 donor-specific antibodies with a proinflammatory glycosylation profile may be associated with the risk of antibody-mediated rejection after kidney transplantation. Am. J. Transpl. 22, 865–875 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Pernin, V. et al. Distribution of de novo donor-specific antibody subclasses quantified by mass spectrometry: high IgG3 proportion is associated with antibody-mediated rejection occurrence and severity. Front. Immunol. 11, 919 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valenzuela, N. M. & Schaub, S. The biology of IgG subclasses and their clinical relevance to transplantation. Transplantation 102, S7–S13 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Viglietti, D. et al. Value of donor-specific anti-HLA antibody monitoring and characterization for risk stratification of kidney allograft loss. J. Am. Soc. Nephrol. 28, 702–715 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Schinstock, C. A. et al. The value of protocol biopsies to identify patients with de novo donor-specific antibody at high risk for allograft loss. Am. J. Transpl. 17, 1574–1584 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Bailly, E. et al. Prognostic value of the persistence of C1q-binding anti-HLA antibodies in acute antibody-mediated rejection in kidney transplantation. Transplantation 102, 688–698 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cazarote, H. B. et al. Complement-fixing donor-specific anti-HLA antibodies and kidney allograft failure. Transpl. Immunol. 49, 33–38 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Loupy, A. et al. Complement-binding anti-HLA antibodies and kidney-allograft survival. N. Engl. J. Med. 369, 1215–1226 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Malheiro, J. et al. Detection of complement-binding donor-specific antibodies, not IgG-antibody strength nor C4d status, at antibody-mediated rejection diagnosis is an independent predictor of kidney graft failure. Transplantation 102, 1943–1954 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sicard, A. et al. Detection of C3d-binding donor-specific anti-HLA antibodies at diagnosis of humoral rejection predicts renal graft loss. J. Am. Soc. Nephrol. 26, 457–467 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Thammanichanond, D. et al. Significance of C1q-fixing donor-specific antibodies after kidney transplantation. Transpl. Proc. 46, 368–371 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Thammanichanond, D. et al. Role of pretransplant complement-fixing donor-specific antibodies identified by C1q assay in kidney transplantation. Transpl. Proc. 48, 756–760 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Viglietti, D. et al. Complement-binding anti-HLA antibodies are independent predictors of response to treatment in kidney recipients with antibody-mediated rejection. Kidney Int. 94, 773–787 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Malard-Castagnet, S. et al. Sialylation of antibodies in kidney recipients with de novo donor specific antibody, with or without antibody mediated rejection. Hum. Immunol. 77, 1076–1083 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barba, T. et al. Highly variable sialylation status of donor-specific antibodies does not impact humoral rejection outcomes. Front. Immunol. 10, 513 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bharadwaj, P. et al. Afucosylation of HLA-specific IgG1 as a potential predictor of antibody pathogenicity in kidney transplantation. Cell Rep. Med. 3, 100818 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhargava, R. et al. N-glycosylated IgG in patients with kidney transplants increases calcium/calmodulin kinase IV in podocytes and causes injury. Am. J. Transpl. 21, 148–160 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Schofield, D. J. et al. Application of phage display to high throughput antibody generation and characterization. Genome Biol. 8, R254 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grabarics, M. et al. Mass spectrometry-based techniques to elucidate the sugar code. Chem. Rev. 122, 7840–7908 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • García-Alija, M. et al. Modulating antibody effector functions by Fc glycoengineering. Biotechnol. Adv. 67, 108201 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Golay, J., Andrea, A. E. & Cattaneo, I. Role of Fc core fucosylation in the effector function of IgG1 antibodies. Front. Immunol. 13, 929895 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mössner, E. et al. Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cell-mediated B-cell cytotoxicity. Blood 115, 4393–4402 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ginthör, N. E., Artinger, K., Pollheimer, M. J., Stradner, M. H. & Eller, K. Membranous nephropathy associated with immunoglobulin G4-related disease successfully treated with obinutuzumab. Clin. Kidney J. 15, 564–566 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Hudson, R., Rawlings, C., Mon, S. Y., Jefferis, J. & John, G. T. Treatment resistant M-type phospholipase A2 receptor associated membranous nephropathy responds to obinutuzumab: a report of two cases. BMC Nephrol. 23, 134 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naik, S. et al. Obinutuzumab in refractory phospholipase A2 receptor-associated membranous nephropathy with severe CKD. Kidney Int. Rep. 8, 942–943 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hiatt, A. et al. Glycan variants of a respiratory syncytial virus antibody with enhanced effector function and in vivo efficacy. Proc. Natl Acad. Sci. USA 111, 5992–5997 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bardhi, A. et al. Potent in vivo NK cell-mediated elimination of HIV-1-infected cells mobilized by a gp120-bispecific and hexavalent broadly neutralizing fusion protein. J. Virol. 91, e00937–17 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeitlin, L. et al. Enhanced potency of a fucose-free monoclonal antibody being developed as an Ebola virus immunoprotectant. Proc. Natl Acad. Sci. USA 108, 20690–20694 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jones, A. J. S. et al. Selective clearance of glycoforms of a complex glycoprotein pharmaceutical caused by terminal N-acetylglucosamine is similar in humans and cynomolgus monkeys. Glycobiology 17, 529–540 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, M. et al. Next generation of anti-PD-L1 atezolizumab with enhanced anti-tumor efficacy in vivo. Sci. Rep. 11, 5774 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qian, J. et al. Structural characterization of N-linked oligosaccharides on monoclonal antibody cetuximab by the combination of orthogonal matrix-assisted laser desorption/ionization hybrid quadrupole-quadrupole time-of-flight tandem mass spectrometry and sequential enzymatic digestion. Anal. Biochem. 364, 8–18 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Janin-Bussat, M.-C. et al. Cetuximab Fab and Fc N-glycan fast characterization using IdeS digestion and liquid chromatography coupled to electrospray ionization mass spectrometry. Methods Mol. Biol. 988, 93–113 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chung, C. H. et al. Cetuximab-induced anaphylaxis and IgE specific for galactose-ɑ-1,3-galactose. N. Engl. J. Med. 358, 1109–1117 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steinke, J. W., Platts-Mills, T. A. E. & Commins, S. P. The alpha-gal story: lessons learned from connecting the dots. J. Allergy Clin. Immunol. 135, 589–596 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pagan, J. D., Kitaoka, M. & Anthony, R. M. Engineered sialylation of pathogenic antibodies in vivo attenuates autoimmune disease. Cell 172, 564–577.e13 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oefner, C. M. et al. Tolerance induction with T cell-dependent protein antigens induces regulatory sialylated IgGs. J. Allergy Clin. Immunol. 129, 1647–1655.e13 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar