Search
Search
Close this search box.

Pulmonary hypertension and chronic kidney disease: prevalence, pathophysiology and outcomes – Nature Reviews Nephrology

  • Tang, M. et al. Pulmonary hypertension, mortality, and cardiovascular disease in CKD and ESRD patients: a systematic review and meta-analysis. Am. J. Kidney Dis. 72, 75–83 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Bolignano, D., Pisano, A., Coppolino, G., Tripepi, G. L. & D’Arrigo, G. Pulmonary hypertension predicts adverse outcomes in renal patients: a systematic review and meta-analysis. Ther. Apher. Dial. 23, 369–384 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Edmonston, D. L. et al. Pulmonary hypertension subtypes and mortality in CKD. Am. J. Kidney Dis. 75, 713–724 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Pabst, S. et al. Pulmonary hypertension in patients with chronic kidney disease on dialysis and without dialysis: results of the PEPPER-study. PLoS One 7, e35310 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Navaneethan, S. D. et al. Presence and outcomes of kidney disease in patients with pulmonary hypertension. Clin. J. Am. Soc. Nephrol. 9, 855–863 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Leary, J. M. et al. Pulmonary hypertension in patients with chronic kidney disease: invasive hemodynamic etiology and outcomes. Pulm. Circ. 7, 674–683 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wolfe, J. D. et al. Pulmonary vascular resistance determines mortality in end-stage renal disease patients with pulmonary hypertension. Clin. Transplant. 32, e13270 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Brinza, C. et al. Pulmonary arterial hypertension and adverse outcomes after kidney transplantation: a systematic review and meta-analysis. J. Clin. Med. 11, 1944 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chakinala, M. M. et al. Impact of declining renal function on outcomes in pulmonary arterial hypertension: a REVEAL registry analysis. J. Heart Lung Transplant. 37, 696–705 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Shah, S. J. et al. Association of serum creatinine with abnormal hemodynamics and mortality in pulmonary arterial hypertension. Circulation 117, 2475–2483 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nickel, N. P. et al. Low-grade albuminuria in pulmonary arterial hypertension. Pulm. Circ. 9, 2045894018824564 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benza, R. L. et al. Predicting survival in pulmonary arterial hypertension: insights from the Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL). Circulation 122, 164–172 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Leopold, J. A. et al. Aldosterone impairs vascular reactivity by decreasing glucose-6-phosphate dehydrogenase activity. Nat. Med. 13, 189–197 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cohn, J. N. & Tognoni, G. Valsartan Heart Failure Trial Investigators. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N. Engl. J. Med. 345, 1667–1675 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Velazquez, E. J. et al. Angiotensin-neprilysin inhibition in acute decompensated heart failure. N. Engl. J. Med. 380, 539–548 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maron, B. A. et al. Aldosterone inactivates the endothelin-B receptor via a cysteinyl thiol redox switch to decrease pulmonary endothelial nitric oxide levels and modulate pulmonary arterial hypertension. Circulation 126, 963–974 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maron, B. A. & Leopold, J. A. The role of the renin-angiotensin-aldosterone system in the pathobiology of pulmonary arterial hypertension (2013 Grover Conference series). Pulm. Circ. 4, 200–210 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maron, B. A. et al. Plasma aldosterone levels are elevated in patients with pulmonary arterial hypertension in the absence of left ventricular heart failure: a pilot study. Eur. J. Heart Fail. 15, 277–283 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, J. et al. Treatment effects of pulmonary artery denervation for pulmonary arterial hypertension stratified by REVEAL risk score: results from PADN-CFDA trial. J. Heart Lung Transplant. 42, 1140-1151 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Calvier, L. et al. Galectin-3 and aldosterone as potential tandem biomarkers in pulmonary arterial hypertension. Heart 102, 390–396 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Humbert, M. et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Respir. J. 61, 2200879 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Leber, L., Beaudet, A. & Muller, A. Epidemiology of pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension: identification of the most accurate estimates from a systematic literature review. Pulm. Circ. 11, 2045894020977300 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maron, B. A. & Galie, N. Diagnosis, treatment, and clinical management of pulmonary arterial hypertension in the contemporary era: a review. JAMA Cardiol. 1, 1056–1065 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stevens, P. E., Levin, A. & Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group Members. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann. Intern. Med. 158, 825–830 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Ronco, C., Bellasi, A. & Di Lullo, L. Cardiorenal syndrome: an overview. Adv. Chronic Kidney Dis. 25, 382–390 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Ronco, C., Haapio, M., House, A. A., Anavekar, N. & Bellomo, R. Cardiorenal syndrome. J. Am. Coll. Cardiol. 52, 1527–1539 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Hoeper, M. M. et al. A global view of pulmonary hypertension. Lancet Respir. Med. 4, 306–322 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 395, 709–733 (2020).

    Article 

    Google Scholar
     

  • Wang, L. et al. Prognostic effect of pulmonary hypertension in patients with chronic kidney disease: univariate and multivariate analyses of factors associated with survival. Front. Med. 9, 972937 (2022).

    Article 

    Google Scholar
     

  • Yang, Q. M. & Bao, X. R. Pulmonary hypertension in patients with stage 1–3 chronic kidney disease. Genet. Mol. Res. 13, 5695–5703 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Verbrugge, F. H., Guazzi, M., Testani, J. M. & Borlaug, B. A. Altered hemodynamics and end-organ damage in heart failure: impact on the lung and kidney. Circulation 142, 998–1012 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bitker, L. et al. Presence of kidney disease as an outcome predictor in patients with pulmonary arterial hypertension. Am. J. Nephrol. 47, 134–143 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Nickel, N. P. et al. Kidney dysfunction in patients with pulmonary arterial hypertension. Pulm. Circ. 7, 38–54 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rossi, G. P., Cavallin, M., Nussdorfer, G. G. & Pessina, A. C. The endothelin-aldosterone axis and cardiovascular diseases. J. Cardiovasc. Pharmacol. 38, 49 (2001).

    Article 

    Google Scholar
     

  • Kopitko, C., Gondos, T., Fulop, T. & Medve, L. Reinterpreting renal hemodynamics: the importance of venous congestion and effective organ perfusion in acute kidney injury. Am. J. Med. Sci. 359, 193–205 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Mullens, W., Verbrugge, F. H., Nijst, P. & Tang, W. H. W. Renal sodium avidity in heart failure: from pathophysiology to treatment strategies. Eur. Heart J. 38, 1872–1882 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Selektor, Y. & Weber, K. T. The salt-avid state of congestive heart failure revisited. Am. J. Med. Sci. 335, 209–218 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Testani, J. M. & Damman, K. Venous congestion and renal function in heart failure … it’s complicated. Eur. J. Heart Fail. 15, 599–601 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Dilley, J. R., Corradi, A. & Arendshorst, W. J. Glomerular ultrafiltration dynamics during increased renal venous pressure. Am. J. Physiol. 244, 650 (1983).


    Google Scholar
     

  • Braam, B., Cupples, W. A., Joles, J. A. & Gaillard, C. Systemic arterial and venous determinants of renal hemodynamics in congestive heart failure. Heart Fail. Rev. 17, 161–175 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Mullens, W. et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J. Am. Coll. Cardiol. 53, 589–596 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uthoff, H. et al. Central venous pressure and impaired renal function in patients with acute heart failure. Eur. J. Heart Fail. 13, 432–439 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Gambardella, I. et al. Congestive kidney failure in cardiac surgery: the relationship between central venous pressure and acute kidney injury. Interact. Cardiovasc. Thorac. Surg. 23, 800–805 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Damman, K. et al. Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J. Am. Coll. Cardiol. 53, 582–588 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Marik, P. E., Baram, M. & Vahid, B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest 134, 172–178 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Castrop, H. Mediators of tubuloglomerular feedback regulation of glomerular filtration: ATP and adenosine. Acta Physiol. 189, 3–14 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Bell, T. D. & Welch, W. J. Regulation of renal arteriolar tone by adenosine: novel role for type 2 receptors. Kidney Int. 75, 769–771 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agarwal, R. Prevalence, determinants and prognosis of pulmonary hypertension among hemodialysis patients. Nephrol. Dial. Transplant. 27, 3908–3914 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abedini, M., Sadeghi, M., Naini, A. E., Atapour, A. & Golshahi, J. Pulmonary hypertension among patients on dialysis and kidney transplant recipients. Ren. Fail. 35, 560–565 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Ramasubbu, K., Deswal, A., Herdejurgen, C., Aguilar, D. & Frost, A. E. A prospective echocardiographic evaluation of pulmonary hypertension in chronic hemodialysis patients in the United States: prevalence and clinical significance. Int. J. Gen. Med. 3, 279–286 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Issa, N. et al. Pulmonary hypertension is associated with reduced patient survival after kidney transplantation. Transplantation 86, 1384–1388 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • de Albuquerque Suassuna, P. G., Sanders-Pinheiro, H. & de Paula, R. B. Uremic cardiomyopathy: a new piece in the chronic kidney disease-mineral and bone disorder puzzle. Front. Med. 5, 206 (2018).

    Article 

    Google Scholar
     

  • Ma, Z. et al. β-Arrestin-mediated angiotensin II type 1 receptor activation promotes pulmonary vascular remodeling in pulmonary hypertension. JACC Basic. Transl. Sci. 6, 854–869 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Man, F. S. et al. Dysregulated renin-angiotensin-aldosterone system contributes to pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 186, 780–789 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Houston, B. A., Brittain, E. L. & Tedford, R. J. Right ventricular failure. N. Engl. J. Med. 388, 1111–1125 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, D. & Birukov, K. Endothelial cell mechano-metabolomic coupling to disease states in the lung microvasculature. Front. Bioeng. Biotechnol. 7, 172 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silva, P. L. et al. Hypervolemia induces and potentiates lung damage after recruitment maneuver in a model of sepsis-induced acute lung injury. Crit. Care 14, R114 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tonelli, A. R., Plana, J. C., Heresi, G. A. & Dweik, R. A. Prevalence and prognostic value of left ventricular diastolic dysfunction in idiopathic and heritable pulmonary arterial hypertension. Chest 141, 1457–1465 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Stern, A. B. & Klemmer, P. J. High-output heart failure secondary to arteriovenous fistula. Hemodial. Int. 15, 104–107 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Reddy, Y. N. V., Melenovsky, V., Redfield, M. M., Nishimura, R. A. & Borlaug, B. A. High-output heart failure: a 15-year experience. J. Am. Coll. Cardiol. 68, 473–482 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Holman, E. Abnormal arteriovenous communications. Great variability of effects with particular reference to delayed development of cardiac failure. Circulation 32, 1001–1009 (1965).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Warren, J. V., Elkin, D. C. & Nickerson, J. L. The blood volume in patients with arteriovenous fistulas. J. Clin. Invest. 30, 220–226 (1951).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rao, N. N., Dundon, B. K., Worthley, M. I. & Faull, R. J. The impact of arteriovenous fistulae for hemodialysis on the cardiovascular system. Semin. Dial. 29, 214–221 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • MacRae, J. M., Pandeya, S., Humen, D. P., Krivitski, N. & Lindsay, R. M. Arteriovenous fistula-associated high-output cardiac failure: a review of mechanisms. Am. J. Kidney Dis. 43, 17 (2004).

    Article 

    Google Scholar
     

  • Ori, Y. et al. The contribution of an arteriovenous access for hemodialysis to left ventricular hypertrophy. Am. J. Kidney Dis. 40, 745–752 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Malik, J. et al. Hemodialysis vascular access affects heart function and outcomes: tips for choosing the right access for the individual patient. J. Vasc. Access. 22, 32–41 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Iwashima, Y. et al. Effects of the creation of arteriovenous fistula for hemodialysis on cardiac function and natriuretic peptide levels in CRF. Am. J. Kidney Dis. 40, 974–982 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reddy, Y. N. V. et al. Long-term cardiovascular changes following creation of arteriovenous fistula in patients with end stage renal disease. Eur. Heart J. 38, 1913–1923 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Unger, P., Wissing, K. M., de Pauw, L., Neubauer, J. & van de Borne, P. Reduction of left ventricular diameter and mass after surgical arteriovenous fistula closure in renal transplant recipients. Transplantation 74, 73–79 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • van Duijnhoven, E. C., Cheriex, E. C., Tordoir, J. H., Kooman, J. P. & van Hooff, J. P. Effect of closure of the arteriovenous fistula on left ventricular dimensions in renal transplant patients. Nephrol. Dial. Transplant. 16, 368–372 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Gumus, F. & Saricaoglu, M. C. Assessment of right heart functions in the patients with arteriovenous fistula for hemodialysis access: right ventricular free wall strain and tricuspid regurgitation jet velocity as the predictors of right heart failure. Vascular 28, 96–103 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Manzur-Pineda, K. et al. Echocardiographic changes after arteriovenous fistula creation in hemodialysis patients. Clin. Nephrol. 98, 229–238 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hetz, P. et al. Prophylactic ligature of AV fistula prevents high output heart failure after kidney transplantation. Am. J. Nephrol. 51, 511–519 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stoumpos, S. & Mark, P. B. Should we ligate arteriovenous fistulas in asymptomatic patients after kidney transplantation? Circulation 139, 2819–2821 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Rodriguez-Espinosa, D. et al. Multimodal strategies for the diagnosis and management of refractory congestion. an integrated cardiorenal approach. Front. Physiol. 13, 913580 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Southgate, L., Machado, R. D., Graf, S. & Morrell, N. W. Molecular genetic framework underlying pulmonary arterial hypertension. Nat. Rev. Cardiol. 17, 85–95 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hassoun, P. M. Pulmonary arterial hypertension. N. Engl. J. Med. 385, 2361–2376 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaiser, R., Seiler, S., Held, M., Bals, R. & Wilkens, H. Prognostic impact of renal function in precapillary pulmonary hypertension. J. Intern. Med. 275, 116–126 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • D’Apolito, M. et al. Urea-induced ROS cause endothelial dysfunction in chronic renal failure. Atherosclerosis 239, 393–400 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giaid, A. et al. Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. N. Engl. J. Med. 328, 1732–1739 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chester, A. H. & Yacoub, M. H. The role of endothelin-1 in pulmonary arterial hypertension. Glob. Cardiol. Sci. Pract. 2014, 62–78 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shao, D., Park, J. E. S. & Wort, S. J. The role of endothelin-1 in the pathogenesis of pulmonary arterial hypertension. Pharmacol. Res. 63, 504–511 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Din, S., Sarathchandra, P., Yacoub, M. H. & Chester, A. H. Interaction between bone morphogenetic proteins and endothelin-1 in human pulmonary artery smooth muscle. Vasc. Pharmacol. 51, 344–349 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Ern Yeoh, S. et al. Endothelin-1, outcomes in patients with heart failure and reduced ejection fraction, and effects of dapagliflozin: findings from DAPA-HF. Circulation 147, 1670–1683 (2023).

    Article 

    Google Scholar
     

  • Rossi, G. P., Belloni, A. S., Nussdorfer, G. G. & Pessina, A. C. Endothelin-1 and the adrenal gland. J. Cardiovasc. Pharmacol. 35, 17 (2000).

    Article 

    Google Scholar
     

  • Miller, W. L., Redfield, M. M. & Burnett, J. C. J. Integrated cardiac, renal, and endocrine actions of endothelin. J. Clin. Invest. 83, 317–320 (1989).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, L. Q. & Banks, R. O. Cardiorenal actions of endothelin, Part II: effects of cyclooxygenase inhibitors. Life Sci. 46, 585–590 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boehm, M. et al. Eplerenone attenuates pathological pulmonary vascular rather than right ventricular remodeling in pulmonary arterial hypertension. BMC Pulm. Med. 18, 41–4 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lariviere, R. et al. Increased immunoreactive endothelin-1 levels in blood vessels and glomeruli of rats with reduced renal mass. Kidney Blood Press. Res. 20, 372–380 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zager, R. A., Johnson, A. C. M., Andress, D. & Becker, K. Progressive endothelin-1 gene activation initiates chronic/end-stage renal disease following experimental ischemic/reperfusion injury. Kidney Int. 84, 703–712 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raina, R. et al. Relationship of urinary endothelin-1 with estimated glomerular filtration rate in autosomal dominant polycystic kidney disease: a pilot cross-sectional analysis. BMC Nephrol. 17, 22–28 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Long, L. et al. Selective enhancement of endothelial BMPR-II with BMP9 reverses pulmonary arterial hypertension. Nat. Med. 21, 777–785 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yeh, C. H., Chang, C. K., Cheng, M. F., Lin, H. J. & Cheng, J. T. Decrease of bone morphogenetic protein-7 (BMP-7) and its type II receptor (BMP-RII) in kidney of type 1-like diabetic rats. Horm. Metab. Res. 41, 605–611 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, Q. et al. Dysregulation of BMP9/BMPR2/SMAD signalling pathway contributes to pulmonary fibrosis and pulmonary hypertension induced by bleomycin in rats. Br. J. Pharmacol. 178, 203–216 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Star, G. P., Giovinazzo, M. & Langleben, D. Bone morphogenic protein-9 stimulates endothelin-1 release from human pulmonary microvascular endothelial cells: a potential mechanism for elevated ET-1 levels in pulmonary arterial hypertension. Microvasc. Res. 80, 349–354 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, J. E. S. et al. BMP-9 induced endothelial cell tubule formation and inhibition of migration involves Smad1 driven endothelin-1 production. PLoS One 7, e30075 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tu, L. et al. Selective BMP-9 inhibition partially protects against experimental pulmonary hypertension. Circ. Res. 124, 846–855 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, D. et al. BMP-9 regulates the osteoblastic differentiation and calcification of vascular smooth muscle cells through an ALK1 mediated pathway. J. Cell. Mol. Med. 19, 165–174 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeisberg, M. et al. BMP-7 counteracts TGF-β1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat. Med. 9, 964–968 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, S., Lapage, J. & Hirschberg, R. Loss of tubular bone morphogenetic protein-7 in diabetic nephropathy. J. Am. Soc. Nephrol. 12, 2392–2399 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kong, L. et al. Sulforaphane ameliorates diabetes-induced renal fibrosis through epigenetic up-regulation of BMP-7. Diabetes Metab. J. 45, 909–920 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeisberg, M. et al. Bone morphogenic protein-7 inhibits progression of chronic renal fibrosis associated with two genetic mouse models. Am. J. Physiol. Renal Physiol. 285, 1060 (2003).

    Article 

    Google Scholar
     

  • Mitu, G. & Hirschberg, R. Bone morphogenetic protein-7 (BMP7) in chronic kidney disease. Front. Biosci. 13, 4726–4739 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morrissey, J. et al. Bone morphogenetic protein-7 improves renal fibrosis and accelerates the return of renal function. J. Am. Soc. Nephrol. 13, 14 (2002).

    Article 

    Google Scholar
     

  • Schrankl, J. et al. Localization of angiotensin II type 1 receptor gene expression in rodent and human kidneys. Am. J. Physiol. Renal Physiol. 320, F644–F653 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rianto, F., Hoang, T., Revoori, R. & Sparks, M. A. Angiotensin receptors in the kidney and vasculature in hypertension and kidney disease. Mol. Cell. Endocrinol. 529, 111259 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Betjes, M. G. H., Sablik, K. A., Litjens, N. H. R., Otten, H. G. & de Weerd, A. E. ARHGDIB and AT1R autoantibodies are differentially related to the development and presence of chronic antibody-mediated rejection and fibrosis in kidney allografts. Hum. Immunol. 82, 89–96 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, Z. et al. Gentiopicroside ameliorates diabetic renal tubulointerstitial fibrosis via inhibiting the AT1R/CK2/NF-κB pathway. Front. Pharmacol. 13, 848915 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Block, G. A. et al. Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J. Am. Soc. Nephrol. 15, 2208–2218 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tentori, F. et al. Mortality risk for dialysis patients with different levels of serum calcium, phosphorus, and PTH: the Dialysis Outcomes and Practice Patterns Study (DOPPS). Am. J. Kidney Dis. 52, 519–530 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kestenbaum, B. et al. Survival following parathyroidectomy among United States dialysis patients. Kidney Int. 66, 2010–2016 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Komaba, H. et al. Parathyroidectomy and survival among Japanese hemodialysis patients with secondary hyperparathyroidism. Kidney Int. 88, 350–359 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Ivarsson, K. M. et al. The effect of parathyroidectomy on patient survival in secondary hyperparathyroidism. Nephrol. Dial. Transplant. 30, 2027–2033 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ulrich, S. et al. Bone mineral density and secondary hyperparathyroidism in pulmonary hypertension. Open. Respir. Med. J. 3, 53–60 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Genctoy, G., Arikan, S. & Gedik, O. Secondary hyperparathyroidism is associated with pulmonary hypertension in older patients with chronic kidney disease and proteinuria. Int. Urol. Nephrol. 47, 353–358 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amin, M., Fawzy, A., Hamid, M. A. & Elhendy, A. Pulmonary hypertension in patients with chronic renal failure: role of parathyroid hormone and pulmonary artery calcifications. Chest 124, 2093–2097 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Acarturk, G. et al. The relationship between arteriovenous fistula blood flow rate and pulmonary artery pressure in hemodialysis patients. Int. Urol. Nephrol. 40, 509–513 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Akmal, M., Barndt, R. R., Ansari, A. N., Mohler, J. G. & Massry, S. G. Excess PTH in CRF induces pulmonary calcification, pulmonary hypertension and right ventricular hypertrophy. Kidney Int. 47, 158–163 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Komaba, H. & Fukagawa, M. The role of FGF23 in CKD — with or without Klotho. Nat. Rev. Nephrol. 8, 484–490 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miri, M., Ahmadi, M. & Hatami, M. Correlation between fibroblast growth factor-23 and pulmonary arterial hypertension in hemodialysis patients. Iran. J. Kidney Dis. 15, 300–305 (2021).

    PubMed 

    Google Scholar
     

  • Widmann, L. et al. Fibroblast growth factor 23 as a biomarker of right ventricular dysfunction in pulmonary hypertension. Clin. Res. Cardiol. 112, 1382–1393 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, M. C. et al. Klotho deficiency causes vascular calcification in chronic kidney disease. J. Am. Soc. Nephrol. 22, 124–136 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurosu, H. et al. Suppression of aging in mice by the hormone Klotho. Science 309, 1829–1833 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mitani, H. et al. In vivo klotho gene transfer ameliorates angiotensin II-induced renal damage. Hypertension 39, 838–843 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Varshney, R., Ali, Q., Wu, C. & Sun, Z. Monocrotaline-induced pulmonary hypertension involves downregulation of antiaging protein Klotho and eNOS activity. Hypertension 68, 1255–1263 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Batlahally, S. et al. Soluble Klotho, a biomarker and therapeutic strategy to reduce bronchopulmonary dysplasia and pulmonary hypertension in preterm infants. Sci. Rep. 10, 12368 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chadban, S. J. et al. KDIGO clinical practice guideline on the evaluation and management of candidates for kidney transplantation. Transplantation 104, S11–S103 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Abramowicz, D. et al. European renal best practice guideline on kidney donor and recipient evaluation and perioperative care. Nephrol. Dial. Transplant. 30, 1790–1797 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Knoll, G. et al. Canadian Society of Transplantation: consensus guidelines on eligibility for kidney transplantation. CMAJ 173, 1 (2005).

    Article 

    Google Scholar
     

  • Frost, A. E. et al. The echocardiographic course of pretransplant pulmonary hypertension following kidney transplantation and associated outcomes. Pulm. Circ. 12, e12030 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoeper, M. M. et al. Phase 3 trial of sotatercept for treatment of pulmonary arterial hypertension. N. Engl. J. Med. 388, 1478–1490 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stickel, S., Gin-Sing, W., Wagenaar, M. & Gibbs, J. S. R. The practical management of fluid retention in adults with right heart failure due to pulmonary arterial hypertension. Eur. Heart J. Suppl. 21, K46–K53 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Webb, D. J., Vachiery, J., Hwang, L. & Maurey, J. O. Sildenafil improves renal function in patients with pulmonary arterial hypertension. Br. J. Clin. Pharmacol. 80, 235–241 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heerspink, H. J. L. et al. Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial. Lancet 393, 1937–1947 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krowka, M. J. et al. International Liver Transplant Society practice guidelines: diagnosis and management of hepatopulmonary syndrome and portopulmonary hypertension. Transplantation 100, 1440–1452 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Nevola, R. et al. Cardiorenal impact of SGLT-2 inhibitors: a conceptual revolution in the management of type 2 diabetes, heart failure and chronic kidney disease. Rev. Cardiovasc. Med. 23, 106 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Nassif, M. E. et al. Empagliflozin effects on pulmonary artery pressure in patients with heart failure: results from the EMBRACE-HF trial. Circulation 143, 1673–1686 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pellicori, P. et al. Ultrasound imaging of congestion in heart failure: examinations beyond the heart. Eur. J. Heart Fail. 23, 703–712 (2021).

    Article 
    PubMed 

    Google Scholar