Search
Search
Close this search box.

Protective roles of thrombomodulin in cisplatin-induced nephrotoxicity through the inhibition of oxidative and endoplasmic reticulum stress – Scientific Reports

  • Hoste, E. A. J. et al. Global epidemiology and outcomes of acute kidney injury. Nat. Rev. Nephrol. 14(10), 607–625. https://doi.org/10.1038/s41581-018-0052-0 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kellum, J. A., Ronco, C. & Bellomo, R. Conceptual advances and evolving terminology in acute kidney disease. Nat. Rev. Nephrol. 17(7), 493–502. https://doi.org/10.1038/s41581-021-00410-w (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chawla, L. S. et al. Acute kidney disease and renal recovery: Consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup. Nat. Rev. Nephrol. 13(4), 241–257. https://doi.org/10.1038/nrneph.2017.2 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Mehta, R. L. et al. Recognition and management of acute kidney injury in the International Society of Nephrology 0by25 Global Snapshot: A multinational cross-sectional study. Lancet 387(10032), 2017–2025. https://doi.org/10.1016/S0140-6736(16)30240-9 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Santos, N. A. G. D., Ferreira, R. S. & Santos, A. C. D. Ovreview of cisplatin-induced neurotoxicity and ototoxicity, and the protective agents. Food Chem. Toxicol. 136, 111079 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Ürün, M. et al. Evaluation of the healing and protective properties of adipose-derived mesenchymal stem cells from cisplatin-induced liver and kidney damage. Eur. Rev. Med. Pharmacol. Sci. 28(4), 1327–1339. https://doi.org/10.26355/eurrev_202402_35454 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Yamaguchi, T. et al. Recombinant soluble thrombomodulin attenuates cisplatin-induced intestinal injury by inhibiting intestinal epithelial cell-derived cytokine secretion. Mol. Biol. Rep. 50(10), 8459–8467. https://doi.org/10.1007/s11033-023-08762-1 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Volarevic, V. et al. Molecular mechanisms of cisplatin-induced nephrotoxicity: A balance on the knife edge between renoprotection and tumor toxicity. J. Biomed. Sci. 26(1), 25. https://doi.org/10.1186/s12929-019-0518-9 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, Y. et al. MicroRNA-709 mediates acute tubular injury through effects on mitochondrial function. J. Am. Soc. Nephrol. 29(2), 449–461. https://doi.org/10.1681/ASN.2017040381 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ichinomiya, M. et al. Demonstration of mitochondrial damage and mitophagy in cisplatin-mediated nephrotoxicity. Tohoku J. Exp. Med. 246(1), 1–8. https://doi.org/10.1620/tjem.246.1 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jia, P. et al. Uncoupling protein 1 inhibits mitochondrial reactive oxygen species generation and alleviates acute kidney injury. EBioMedicine 49, 331–340. https://doi.org/10.1016/j.ebiom.2019.10.023 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, C., Bailly-Maitre, B. & Reed, J. C. Endoplasmic reticulum stress: Cell life and death decisions. J. Clin. Investig. 115(10), 2656–2664. https://doi.org/10.1172/JCI26373 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Linkermann, A. et al. Regulated cell death in AKI. J. Am. Soc. Nephrol. 25(12), 2689–2701. https://doi.org/10.1681/ASN.2014030262 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ishimoto, Y. & Inagi, R. Mitochondria: A therapeutic target in acute kidney injury. Nephrol. Dial. Transplant. 31(7), 1062–1069. https://doi.org/10.1093/ndt/gfv317 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gallazzini, M. & Pallet, N. Endoplasmic reticulum stress and kidney dysfunction. Biol. Cell 110(9), 205–216. https://doi.org/10.1111/boc.201800019 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Hashimoto, S. et al. In vitro and in vivo release of cytostatic factors from Lactobacillus casei-elicited peritoneal macrophages after stimulation with tumor cells and immunostimulants. Cancer Immunol. Immunother. 24(1), 1–7. https://doi.org/10.1007/BF00199825 (1987).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Esmon, C. T. Thrombomodulin as a model of molecular mechanisms that modulate protease specificity and function at the vessel surface. FASEB. J. 9(10), 946–955. https://doi.org/10.1096/fasebj.9.10.19 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wouwer, M., Collen, D. & Conway, E. M. Thrombomodulin-protein C-EPCR system: Integrated to regulate coagulation and inflammation. Arterioscler. Thromb. Vasc. Biol. 24(8), 1374–1383. https://doi.org/10.1161/01.ATV.0000134298.25489.92 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, T. L. et al. Thrombomodulin regulates keratinocyte differentiation and promotes wound healing. J. Investig. Dermatol. 133(6), 1638–1645. https://doi.org/10.1038/jid.2013.8 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matsumoto, M. et al. Efficacy of recombinant human-soluble thrombomodulin for severe acute pancreatitis in a rat experimental model. Pancreas 49(4), 503–508. https://doi.org/10.1097/MPA.0000000000001527 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kurokohchi, K., Imataki, O. & Kubo, F. Anti-inflammatory effect of recombinant thrombomodulin for fulminant hepatic failure. World J. Gastroenterol. 21(26), 8203–8207. https://doi.org/10.3748/wjg.v21.i26.8203 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Conway, E. M., Nowakowski, B. & Steiner-Mosonyi, M. Human neutrophils synthesize thrombomodulin that does not promote thrombin-dependent protein C activation. Blood 80(5), 1254–1263 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Conway, E. M. & Nowakowski, B. Biologically active thrombomodulin is synthesized by adherent synovial fluid cells and is elevated in synovial fluid of patients with rheumatoid arthritis. Blood 81(3), 726–733 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McCachren, S. S. et al. Thrombomodulin expression by human blood monocytes and by human synovial tissue lining macrophages. Blood 78(12), 3128–3132 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ito, T. & Maruyama, I. Thrombomodulin: Protectorate God of the vasculature in thrombosis and inflammation. J. Thromb. Haemost. 9(Suppl 1), 168–173. https://doi.org/10.1111/j.1538-7836.2011.04319.x (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharfuddin, A. A. et al. Soluble thrombomodulin protects ischemic kidneys. J. Am. Soc. Nephrol. 20(3), 524–534. https://doi.org/10.1681/ASN.2008060593 (2009).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakahara, M. et al. Recombinant thrombomodulin protects mice against histone-induced lethal thromboembolism. PLoS One 8(9), e75961. https://doi.org/10.1371/journal.pone.0075961 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hazman, Ö. et al. The effect of boric acid and borax on oxidative stress, inflammation, ER stress and apoptosis in cisplatin toxication and nephrotoxicity developing as a result of toxication. Inflammation 41(3), 1032–1048. https://doi.org/10.1007/s10753-018-0756-0 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Havasi, A. & Borkan, S. C. Apoptosis and acute kidney injury. Kidney Int. 80(1), 29–40. https://doi.org/10.1038/ki.2011.120 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manohar, S. & Leung, N. Cisplatin nephrotoxicity: A review of the literature. J. Nephrol. 31(1), 15–25. https://doi.org/10.1007/s40620-017-0392-z (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hao, Y. et al. 2-Methylquinazoline derivative 23BB as a highly selective histone deacetylase 6 inhibitor alleviated cisplatin-induced acute kidney injury. Biosci. Rep. 40(1), BSR20191538. https://doi.org/10.1042/BSR20191538 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan, Z. et al. Pharmacological and genetic inhibition of fatty acid-binding protein 4 alleviated cisplatin-induced acute kidney injury. J. Cell. Mol. Med. 23(9), 6260–6270. https://doi.org/10.1111/jcmm.14512 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, H. J. et al. NLRP3 inflammasome knockout mice are protected against ischemic but not cisplatin-induced acute kidney injury. J. Pharmacol. Exp. Ther. 346(3), 465–472. https://doi.org/10.1124/jpet.113.205732 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kimura, A. et al. Interferon-γ is protective in cisplatin-induced renal injury by enhancing autophagic flux. Kidney Int. 82(10), 1093–1104. https://doi.org/10.1038/ki.2012.240 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burks, S. R. et al. Mesenchymal stromal cell potency to treat acute kidney injury increased by ultrasound-activated interferon-γ/interleukin-10 axis. J. Cell. Mol. Med. 22(12), 6015–6025. https://doi.org/10.1111/jcmm.13874 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gozzelino, R., Jeney, V. & Soares, M. P. Mechanisms of cell protection by heme oxygenase-1. Annu. Rev. Pharmacol. Toxicol. 2010(50), 323–354. https://doi.org/10.1146/annurev.pharmtox.010909.105600 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Grochot-Przeczek, A., Dulak, J. & Jozkowicz, A. Haem oxygenase-1: Non-canonical roles in physiology and pathology. Clin. Sci. (Lond.) 122(3), 93–103. https://doi.org/10.1042/CS20110147 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bolisetty, S. et al. Proximal tubule-targeted heme oxygenase-1 in cisplatin-induced acute kidney injury. Am. J. Physiol. Renal Physiol. 310(5), F385–F394. https://doi.org/10.1152/ajprenal.00335.2015 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng, J. S. et al. Cordyceps cicadae mycelia ameliorate cisplatin-induced acute kidney injury by suppressing the TLR4/NF-κB/MAPK and activating the HO-1/Nrf2 and Sirt-1/AMPK pathways in mice. Oxid. Med. Cell Longev. https://doi.org/10.1155/2020/7912763 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chien, L. H. et al. Salvianolic acid C protects against cisplatin-induced acute kidney injury through attenuation of inflammation, oxidative stress and apoptotic effects and activation of the CaMKK-AMPK-Sirt1-associated signaling pathway in mouse models. Antioxidants (Basel) 10(10), 1620. https://doi.org/10.3390/antiox10101620 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, L. et al. Restoration of E-cadherin by PPBICA protects against cisplatin-induced acute kidney injury by attenuating inflammation and programmed cell death. Lab. Investig. 98(7), 911–923. https://doi.org/10.1038/s41374-018-0052-5 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramesh, G. & Reeves, W. B. TNF-α mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. J. Clin. Investig. 110(6), 835–842. https://doi.org/10.1172/JCI15606 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faubel, S. et al. Cisplatin-induced acute renal failure is associated with an increase in the cytokines interleukin (IL)-1β, IL-18, IL-6, and neutrophil infiltration in the kidney. J. Pharmacol. Exp. Ther. 322(1), 8–15. https://doi.org/10.1124/jpet.107.119792 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding, Y. et al. Regulation networks of non-coding RNA-associated ceRNAs in cisplatin-induced acute kidney injury. Cells 11(19), 2971. https://doi.org/10.3390/cells11192971 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, Z. et al. Single-nucleus transcriptional profiling of chronic kidney disease after cisplatin nephrotoxicity. Am. J. Pathol. 192(4), 613–628. https://doi.org/10.1016/j.ajpath.2021.12.012 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng, L., Xinxiu, L., Weixing, L. & Xu, Z. Inhibition of CXCL1-CXCR2 axis ameliorates cisplatin-induced acute kidney injury by mediating inflammatory response. Biomed. Pharmacother. 122, 109693. https://doi.org/10.1016/j.biopha.2019.109693 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Pabla, N. & Dong, Z. Cisplatin nephrotoxicity: Mechanisms and renoprotective strategies. Kidney Int. 73(9), 994–1007. https://doi.org/10.1038/sj.ki.5002786 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mahgoub, E. et al. Genipin attenuates cisplatin-induced nephrotoxicity by counteracting oxidative stress, inflammation, and apoptosis. Biomed. Pharmacother. 93, 1083–1097. https://doi.org/10.1016/j.biopha.2017.07.018 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Landau, S. I. et al. Regulated necrosis and failed repair in cisplatin-induced chronic kidney disease. Kidney Int. 95(4), 797–814. https://doi.org/10.1016/j.kint.2018.11.042 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gómez-Sierra, T. et al. Role of food-derived antioxidants against cisplatin induced-nephrotoxicity. Food Chem. Toxicol. 120, 230–242. https://doi.org/10.1016/j.fct.2018.07.018 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chirino, Y. I. & Pedraza-Chaverri, J. Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity. Exp. Toxicol. Pathol. 61(3), 223–242. https://doi.org/10.1016/j.etp.2008.09.003 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, S. S. & Kaufman, R. J. Targeting endoplasmic reticulum stress in metabolic disease. Expert. Opin. Ther. Targets 17(4), 437–448. https://doi.org/10.1517/14728222.2013.756471 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Small, D. M., Coombes, J. S., Bennett, N., Johnson, D. W. & Gobe, G. C. Oxidative stress, anti-oxidant therapies and chronic kidney disease. Nephrology (Carlton) 17(4), 311–321. https://doi.org/10.1111/j.1440-1797.2012.01572.x (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Almanza, A. et al. Endoplasmic reticulum stress signaling—From basic mechanisms to clinical applications. FEBS J. 286(2), 241–278. https://doi.org/10.1111/febs.14608 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reyes-Fermín, L. M. et al. Natural antioxidants’ effects on endoplasmic reticulum stress-related diseases. Food Chem. Toxicol. 138, 111229. https://doi.org/10.1016/j.fct.2020.111229 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goligorsky, M. S. Oxidative stress and the kidney: Riding on the curve of hormesis. Antioxid. Redox Signal. 25(3), 117–118. https://doi.org/10.1089/ars.2016.6794 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lieberthal, W., Triaca, V. & Levine, J. Mechanisms of death induced by cisplatin in proximal tubular epithelial cells: Apoptosis vs necrosis. Am. J. Physiol. 270(42), F700–F708. https://doi.org/10.1152/ajprenal.1996.270.4.F700 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Breckenridge, D. G., Germain, M., Mathai, J. P., Nguyen, M. & Shore, G. C. Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene 22(53), 8608–8618. https://doi.org/10.1038/sj.onc.1207108 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao, B. et al. TTF1-NPs induce ERS-mediated apoptosis and inhibit human hepatoma cell growth in vitro and in vivo. Oncol. Res. 23(6), 311–320. https://doi.org/10.3727/096504016X14567549091341 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marrer, E. & Dieterle, F. Impact of biomarker development on drug safety assessment. Toxicol. Appl. Pharmacol. 243(2), 167–179. https://doi.org/10.1016/j.taap.2009.12.015 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, H. & Baliga, R. Endoplasmic reticulum stress-associated caspase 12 mediates cisplatin-induced LLC-PK1 cell apoptosis. J. Am. Soc. Nephrol. 16(7), 1985–1992. https://doi.org/10.1681/ASN.2004090768 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Márton, M. et al. A systems biological view of life-and-death decision with respect to endoplasmic reticulum stress—The role of PERK pathway. Int. J. Mol. Sci. 18(1), 58. https://doi.org/10.3390/ijms18010058 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeon, M. Y. et al. Maritoclax enhances TRAIL-induced apoptosis via CHOP-mediated upregulation of DR5 and miR-708-mediated downregulation of cFLIP. Molecules 23(11), 3030. https://doi.org/10.3390/molecules23113030 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gu, S., Chen, C., Jiang, X. & Zhang, Z. ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction underlie apoptosis induced by resveratrol and arsenic trioxide in A549 cells. Chem. Biol. Interact. 245, 100–109. https://doi.org/10.1016/j.cbi.2016.01.005 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, X., Yan, L., Zhu, Q. & Shao, F. Puerarin attenuates cisplatin-induced rat nephrotoxicity: The involvement of TLR4/NF-κB signaling pathway. PLoS One 12(2), e0171612. https://doi.org/10.1371/journal.pone.0171612 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, W., Yang, Y., Li, Y., Zhao, Y. & Jiang, H. Sirt5 attenuates cisplatin-induced acute kidney injury through regulation of Nrf2/HO-1 and Bcl-2. Biomed. Res. Int. 2019, 4745132. https://doi.org/10.1155/2019/4745132 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ogueji, E., Nwani, C., Mbah, C., Iheanacho, S. & Nweke, F. Oxidative stress, biochemical, lipid peroxidation, and antioxidant responses in Clarias gariepinus exposed to acute concentrations of ivermectin. Environ. Sci. Pollut. Res. Int. 27(14), 16806–16815. https://doi.org/10.1007/s11356-019-07035-4 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Agarwal, A. & Nick, H. S. Renal response to tissue injury: Lessons from heme oxygenase-1 GeneAblation and expression. J. Am. Soc. Nephrol. 11(5), 965–973. https://doi.org/10.1681/ASN.V115965 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Agarwal, A., Balla, J., Alam, J., Croatt, A. J. & Nath, K. A. Induction of heme oxygenase in toxic renal injury: A protective role in cisplatin nephrotoxicity in the rat. Kidney Int. 48(4), 1298–1307. https://doi.org/10.1038/ki.1995.414 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shiraishi, F. et al. Heme oxygenase-1 gene ablation or expression modulates cisplatin-induced renal tubular apoptosis. Am. J. Physiol. Renal Physiol. 278(5), F726–F736. https://doi.org/10.1152/ajprenal.2000.278.5.F726 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bolisetty, S. et al. Heme oxygenase-1 inhibits renal tubular macroautophagy in acute kidney injury. J. Am. Soc. Nephrol. 21(10), 1702–1712. https://doi.org/10.1681/ASN.2010030238 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakagawa, T. et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403(6765), 98–103. https://doi.org/10.1038/47513 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dille, J. R. Historical development of civil aviation medical standards. Aviat. Space Environ. Med. 63(3), 237–238 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, B., Ramesh, G., Uematsu, S. & Akira, S. TLR4 signaling mediates inflammation and tissue injury in nephrotoxicity. J. Am. Soc. Nephrol. 19(5), 923–932. https://doi.org/10.1681/ASN.2007090982 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuhad, A. et al. Effect of curcumin on inflammation and oxidative stress in cisplatin-induced experimental nephrotoxicity. J. Agric. Food Chem. 55(25), 10150–10155. https://doi.org/10.1021/jf0723965 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hayase, N. et al. Recombinant thrombomodulin on neutrophil extracellular traps in murine intestinal ischemia–reperfusion. Anesthesiology 131(4), 866–882. https://doi.org/10.1097/ALN.0000000000002898 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Terryn, S. et al. A primary culture of mouse proximal tubular cells, established on collagen-coated membranes. Am. J. Physiol. Renal Physiol. 293(2), F476–F485. https://doi.org/10.1152/ajprenal.00363.2006 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tanaka, K. et al. Pharmacological differentiation of thrombomodulin alfa and activated protein C on coagulation and fibrinolysis in vitro. Clin. Appl. Thromb. Hemost. 24(6), 859–866. https://doi.org/10.1177/1076029618770274 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kimura, A. et al. Exaggerated arsenic nephrotoxicity in female mice through estrogen-dependent impairments in the autophagic flux. Toxicology 2(339), 9–18. https://doi.org/10.1016/j.tox.2015.11.005 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Ishida, Y. et al. Essential involvement of neutrophil elastase in acute acetaminophen hepatotoxicity using BALB/c mice. Int. J. Mol. Sci. 24(9), 7845. https://doi.org/10.3390/ijms24097845 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar