Standl, E. et al. The global epidemics of diabetes in the 21st century: Current situation and perspectives. Eur. J. Prev. Cardiol. 26, 7–14 (2019).
Ogurtsova, K. et al. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract. 1(128), 40–50 (2017).
Zheng, Y., Ley, S. H. & Hu, F. B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol. 14(2), 88–98 (2018).
Al-Lawati, J. A. Diabetes mellitus: A local and global public health emergency!. Oman Med. J. 32(3), 177–179 (2017).
Gupta, R., Woo, K. & Yi, J. A. Epidemiology of end-stage kidney disease. Semin. Vasc. Surg. 34(1), 71–78. https://doi.org/10.1053/j.semvascsurg.2021.02.010 (2021).
Reutens, A. T. Epidemiology of diabetic kidney disease. Med. Clin. N. Am. 97(1), 1–18. https://doi.org/10.1016/j.mcna.2012.10.001 (2013).
Glassock, R. J., Warnock, D. G. & Delanaye, P. The global burden of chronic kidney disease: Estimates, variability and pitfalls. Nat. Rev. Nephrol. 13(2), 104–114. https://doi.org/10.1038/nrneph.2016.163 (2017).
Levin, A. et al. Kidney disease: Improving global outcomes (KDIGO) CKD work group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 3(1), 1–150. https://doi.org/10.7326/M21-0834 (2013).
Couser, W. G., Remuzzi, G., Mendis, S. & Tonelli, M. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney Int. 80(12), 1258 (2011).
Koye, D. N. et al. The global epidemiology of diabetes and kidney disease. Adv Chronic Kidney Dis. 25, 121–132 (2018).
Noble, R. & Taal, M. W. Epidemiology and causes of chronic kidney disease. Medicine 47, 562–566 (2019).
Vaidya, S.R., Aeddula, N.R. Chronic renal failure, in Statpearls [online] https://www.ncbi.nlm.nih.gov/books/NBK535404/(StatPearls Publishing, Treasure Island, 2022).
Thomas, M. C. et al. Diabetic kidney disease. Nat. Rev. Dis. Primers 1, 15018. https://doi.org/10.1038/nrdp.2015.18 (2015).
Retnakaran, R., Cull, C. A., Thorne, K. I., Adler, A. I., Holman RR for the UKPDS Study Group. Risk factors for renal dysfunction in type 2 diabetes: U.K. Prospective diabetes study 74. Diabetes 55(6), 1832–1839. https://doi.org/10.2337/db05-1620 (2006).
Radcliffe, N. J. et al. Clinical predictive factors in diabetic kidney disease progression. J. Diabetes Invest. 8(1), 6–18. https://doi.org/10.1111/jdi.12533 (2017).
Wang, C. P. et al. Interrelationship of risk factors and pathways associated with chronic kidney disease in patients with type 2 diabetes mellitus: A structural equation modelling analysis. Public Health 190, 135–144. https://doi.org/10.1016/j.puhe.2020.02.007 (2021).
Jocelyn, I., Ozier-Lafontaine, N. & Sabbah, N. High blood pressure in populations with African ancestry: An increased vulnerability to target organ damage?. Rev. Prat. 63(5), 674–675 (2013).
Bosworth, H. B. et al. Racial differences in blood pressure control: Potential explanatory factors. Am. J. Med. 119(1), 70.e9–15. https://doi.org/10.1016/j.amjmed.2005.08.019 (2006).
Dreyer, G., Hull, S., Aitken, Z., Chesser, A. & Yaqoob, M. The effect of ethnicity on the prevalence of diabetes and associated chronic kidney disease. QJM My J. Assoc. Physicians 102, 261–269. https://doi.org/10.1093/qjmed/hcn177 (2009).
Friedman, D. J. & Pollak, M. R. APOL1 nephropathy: From genetics to clinical applications. Clin. J. Am. Soc. Nephrol. 16(2), 294–303. https://doi.org/10.2215/CJN.15161219 (2021).
Norton, J. M. et al. Social determinants of racial disparities in CKD. J. Am. Soc. Nephrol. 27(9), 2576–2595. https://doi.org/10.1681/ASN.2016010027 (2016).
Thomas, R., Kanso, A. & Sedor, J. R. Chronic kidney disease and its complications. Prim. Care 35, 329–344 (2008).
Gerstein, H. C. et al. Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. JAMA 286, 421–426 (2001).
Hahr, A. J. & Molitch, M. E. Management of diabetes mellitus in patients with chronic kidney disease. Clin. Diabetes Endocrinol. 1, 2 (2015).
Chadban, S. J. et al. Prevalence of kidney damage in Australian adults: The AusDiab kidney study. J. Am. Soc. Nephrol. 14, S131–S138 (2003).
Thomas, M. C. et al. The burden of chronic kidney disease in Australian patients with type 2 diabetes (the NEFRON study). Med. J. Aust. 185, 140–144 (2006).
Plantinga, L. C. et al. Prevalence of chronic kidney disease in US adults with undiagnosed diabetes or prediabetes. Clin. J. Am. Soc. Nephrol. 5, 673–682 (2010).
van der Meer, V. et al. Chronic kidney disease in patients with diabetes mellitus type 2 or hypertension in general practice. Br. J. Gen. Pract. 60, 884–890 (2010).
Afkarian, M. et al. Kidney disease and increased mortality risk in type 2 diabetes. J. Am. Soc. Nephrol. 24(2), 302–308. https://doi.org/10.1681/ASN.2012070718 (2013).
Pavkov, M. E. et al. Predominant effect of kidney disease on mortality in Pima Indians with or without type 2 diabetes. Kidney Int. 68, 1267–1274 (2005).
Groop, P. H. et al. The presence and severity of chronic kidney disease predicts all-cause mortality in type 1 diabetes. Diabetes 58, 1651–1658 (2009).
McBrien, K. A. et al. Health care costs in people with diabetes and their association with glycemic control and kidney function. Diabetes Care 36, 1172–1180 (2013).
Roy, S. et al. Risk factors and comorbidities associated with diabetic kidney disease. J. Prim. Care Commun. Health 12, 21501327211048556. https://doi.org/10.1177/21501327211048556 (2021).
Statistics Centre Abu Dhabi. Population and Demographic Estimates for the Emirate of Abu Dhabi (2017) Accessed 11 May 2020. https://www.scad.ae/Release%20Documents/SYB_2017_EN.PDF
Tawam Hospital [Internet] (2020). https://www.seha.ae/tawam/English/Pages/default.aspx
Al-Shamsi, S., Regmi, D. & Govender, R. D. Chronic kidney disease in patients at high risk of cardiovascular disease in the United Arab Emirates: A population-based study. PloS One 13(6), e0199920 (2018).
Fine, J. P. & Gray, R. J. A proportional hazards model for the subdistribution of a competing risk. J. Am. Stat. Assoc. 94, 496–509 (1999).
Gui, J. & Li, H. Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data. Bioinformatics 21, 3001–3008 (2005).
Park, M. Y. & Hastie, T. L1-regularization path algorithm for generalized linear models. J. R. Stat. Soc. Ser. B 69, 659–677 (2007).
Tohidi, M. et al. Incidence of chronic kidney disease and its risk factors, results of over 10 year follow up in an Iranian cohort. PloS One 7, e45304 (2012).
Koye, D. N. et al. Incidence of chronic kidney disease among people with diabetes: A systematic review of observational studies. Diabet. Med. 34, 887–901 (2017).
De Cosmo, S. et al. Predictors of chronic kidney disease in type 2 diabetes. Medicine 95, e4007 (2016).
Gansevoort, R. T. et al. Lower estimated GFR and higher albuminuria are associated with adverse kidney outcomes. A collaborative meta-analysis of general and high-risk population cohorts. Kidney Int. 80, 93–104 (2011).
Koraishy, F. M., Hooks-Anderson, D., Salas, J., Rauchman, M. & Scherrer, J. F. Fast GFR decline and progression to CKD among primary care patients with preserved GFR. Int. Urol..Nephrol. 50, 501–508 (2018).
Taal, M. W. & Brenner, B. M. Predicting initiation and progression of chronic kidney disease: Developing renal risk scores. Kidney Int. 70, 1694–1705 (2006).
Hooi, L. S. et al. A population-based study measuring the prevalence of chronic kidney disease among adults in West Malaysia. Kidney Int. 84, 1034–1040 (2013).
Muntner, P., Coresh, J., Smith, J. C., Eckfeldt, J. & Klag, M. J. Plasma lipids and risk of developing renal dysfunction: The atherosclerosis risk in communities study. Kidney Int. 58, 293–301 (2000).
Fox, C. S. et al. Predictors of new-onset kidney disease in a community-based population. JAMA 291, 844–850 (2004).
Yamagata, K. et al. Risk factors for chronic kidney disease in a community-based population: A 10- year follow-up study. Kidney Int. 71, 159–166 (2007).
Salinero-Fort, M. A. et al. Five-year incidence of chronic kidney disease (stage 3–5) and associated risk factors in a Spanish cohort: The MADIABETES study. PLoS One 10, e0122030 (2015).
Bash, L. D., Selvin, E., Steffes, M., Coresh, J. & Astor, B. C. Poor glycemic control in diabetes and the risk of incident chronic kidney disease even in the absence of albuminuria and retinopathy: Atherosclerosis risk in communities (ARIC) study. Arch. Intern. Med. 168, 2440–2447 (2008).
Nenov, V. D., Taal, M. W., Sakharova, O. V. & Brenner, B. M. Multi-hit nature of chronic renal disease. Curr. Opin. Nephrol. Hypertens. 9, 85–97 (2000).
Ren, Q. et al. Derivation and validation of a prediction model of end-stage renal disease in patients with type 2 diabetes based on a systematic review and meta-analysis. Front. Endocrinol. 13, 825950 (2022).
McMahon, G. M., Hwang, S.-J. & Fox, C. S. Residual lifetime risk of chronic kidney disease. Nephrol. Dial. Transplant. 32, 1705–1709 (2017).
Wagnew, F. et al. Diabetic Nephropathy and Hypertension in Diabetes patients of sub-saharan countries: a systematic review and meta-analysis. BMC Res. Notes 11(1), 565 (2018).
Tomino, Y. & Gohda, T. J. K. D. The prevalence and management of diabetic nephropathy in Asia. Kidney Dis. 1(1), 52–60 (2015).
Garofalo, C. et al. A systematic review and meta-analysis suggests obesity predicts onset of chronic kidney disease in the general population. Kidney Int. 91(5), 1224–1235 (2017).
Liao, X. et al. Contribution of CKD to mortality in middle-aged and elderly people with diabetes: The china health and retirement longitudinal study. Diabetol. Metab. Synd. 15(1), 1–8 (2023).
Kang, Y. U., Bae, E. H., Ma, S. K. & Kim, S. W. Determinants and burden of chronic kidney disease in a high-risk population in Korea: Results from a cross-sectional study. Korean J. Intern. Med. 31, 920–929 (2016).
Lees, J. S. et al. Glomerular filtration rate by differing measures, albuminuria and prediction of cardiovascular disease, mortality and end-stage kidney disease. Nat. Med. 25(11), 1753–1760 (2019).
Provenzano, M. et al. The role of prognostic and predictive biomarkers for assessing cardiovascular risk in chronic kidney disease patients. BioMed Res. Int. https://doi.org/10.1155/2020/2314128 (2020).
Tsai, J. W. et al. Evaluating the impact and rationale of race-specific estimations of kidney function: Estimations from US NHANES, 2015–2018. eClinicalMedicine 42, 101197 (2021).
Bakris, G. L., Hart, P. & Ritz, E. Beta-blockers in the management of chronic kidney disease. Kidney Int. 70, 1905–1913 (2006).
Ptinopoulou, A. G., Pikilidou, M. I. & Lasaridis, A. N. The effect of antihypertensive drugs on chronic kidney disease: A comprehensive review. Hypertens. Res. 36(2), 91–101 (2013).
Epstein, M. & Oster, J. R. Beta blockers and renal function: A reappraisal. J. Clin. Hypertens. 1, 85–99 (1985).
Zuanetti, G., Maggioni, A. P., Keane, W. & Ritz, E. Nephrologists neglect administration of betablockers to dialysed diabetic patients. Nephrol. Dial. Transplant. 12, 2497–2500 (1997).
Wright, R. S. et al. Acutemyocardial infarction and renal dysfunction: A high-risk combination. Ann. Int. Med. 137(7), 563–570 (2002).
Abbott, K. C., Trespalacios, F. C., Agodoa, L. Y., Taylor, A. J. & Bakris, G. L. β-blocker use in long-termdialysis patients: Association with hospitalized heart failure andmortality. Arch. Intern. Med. 164(22), 2465–2471 (2004).
Badve, S. V. et al. Effects of beta-adrenergic antagonists in patients with chronic kidney disease: A systematic review and meta-analysis. J. Am. Coll. Cardiol. 58, 1152–1161 (2011).
McCullough, P. A. et al. Benefits of aspirin and beta-blockade after myocardial infarction in patients with chronic kidney disease. Am. Heart J. 144, 226–232 (2002).
Totoli, C., Carvalho, A. B., Ammirati, A. L., Draibe, S. A. & Canziani, M. E. F. Associated factors related to chronic kidney disease progression in elderly patients. PLoS One 14(7), e0219956 (2019).
Hödlmoser, S. et al. Sex differences in chronic kidney disease awareness among US adults, 1999 to 2018. PLoS One 15(12), e0243431 (2020).
Ekanayake, I.U., & Herath, D. Chronic kidney disease prediction using machine learning methods, in 2020 Moratuwa Engineering Research Conference (MERCon) 260–265 (IEEE, 2020).
Levey, A. S. et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 150, 604–612 (2009).
Michels, W. M. et al. Performance of the Cockcroft-gault, MDRD, and new CKD-EPI formulas in relation to GFR, age, and body size. Clin. J. Am. Soc. Nephrol. 5, 1003–1009 (2010).
Matsushita, K. et al. Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate. JAMA 307, 1941–1951 (2012).
Jessani, S. et al. Estimation of GFR in south Asians: A study from the general population in Pakistan. Am. J. Kidney Dis. 63, 49–58. https://doi.org/10.1053/j.ajkd.2013.07.023 (2014).
Bang, H. et al. SCreening for occult REnal disease (SCORED): A simple prediction model for chronic kidney disease. Arch. Intern. Med. 167, 374–381 (2007).
Hoefield, R. A. et al. The use of eGFR and ACR to predict decline in renal function in people with diabetes. Nephrol. Dial. Transplant. 26, 887–892 (2011).
Low, S. et al. Development and validation of a predictive model for chronic kidney disease progression in type 2 diabetes mellitus based on a 13-year study in Singapore. Diabetes Res. Clin. Pract. 123, 49–54 (2017).
Berhane, A. M., Weil, E. J., Knowler, W. C., Nelson, R. G. & Hanson, R. L. Albuminuria and estimated glomerular filtration rate as predictors of diabetic end-stage renal disease and death. Clin. J. Am. Soc. Nephrol. 6, 2444–2451 (2011).
Al Shamsi, S., Al Dhanhani, A., Sheek-Hussein, M. M. & Bakoush, O. Provision of care for chronic kidney disease by non-nephrologists in a developing nation: A national survey. BMJ Open. 6, e010832 (2016).
- The Renal Warrior Project. Join Now
- Source: https://www.nature.com/articles/s41598-024-58574-x