Search
Search
Close this search box.

Post-translational modifications in kidney diseases and associated cardiovascular risk – Nature Reviews Nephrology

  • Hill, N. R. et al. Global prevalence of chronic kidney disease — a systematic review and meta-analysis. PLoS One 11, e0158765 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Himmelfarb, J., Vanholder, R., Mehrotra, R. & Tonelli, M. The current and future landscape of dialysis. Nat. Rev. Nephrol. 16, 573–585 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsushita, K. et al. Epidemiology and risk of cardiovascular disease in populations with chronic kidney disease. Nat. Rev. Nephrol. 18, 696–707 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Junho, C. V. C., Frisch, J., Soppert, J., Wollenhaupt, J. & Noels, H. Cardiomyopathy in chronic kidney disease: clinical features, biomarkers and the contribution of murine models in understanding pathophysiology. Clin. Kidney J. https://doi.org/10.1093/ckj/sfad085 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jankowski, J., Floege, J., Fliser, D., Böhm, M. & Marx, N. Cardiovascular disease in chronic kidney disease: pathophysiological insights and therapeutic options. Circulation 143, 1157–1172 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noels, H. & Jankowski, J. Increased risk of cardiovascular complications in chronic kidney disease: introduction to a compendium. Circ. Res. 132, 899–901 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cases Amenós, A., González-Juanatey, J. R., Conthe Gutiérrez, P., Matalí Gilarranz, A. & Garrido Costa, C. Prevalence of chronic kidney disease in patients with or at a high risk of cardiovascular disease. Rev. Esp. Cardiol. 63, 225–228 (2010).

    PubMed 

    Google Scholar
     

  • Wan, E. Y. F. et al. Burden of CKD and cardiovascular disease on life expectancy and health service utilization: a cohort study of Hong Kong Chinese hypertensive patients. J. Am. Soc. Nephrol. 30, 1991–1999 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zoccali, C. & Mallamaci, F. Innate immunity system in patients with cardiovascular and kidney disease. Circ. Res. 132, 915–932 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ebert, T. et al. Inflammation and oxidative stress in chronic kidney disease and dialysis patients. Antioxid. Redox Signal. 35, 1426–1448 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schreibing, F., Anslinger, T. M. & Kramann, R. Fibrosis in pathology of heart and kidney: from deep RNA-sequencing to novel molecular TARGets. Circ. Res. 132, 1013–1033 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baaten, C., Vondenhoff, S. & Noels, H. Endothelial cell dysfunction and increased cardiovascular risk in patients with chronic kidney disease. Circ. Res. 132, 970–992 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hutcheson, J. D. & Goettsch, C. Cardiovascular calcification heterogeneity in chronic kidney disease. Circ. Res. 132, 993–1012 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baaten, C. et al. Platelet abnormalities in CKD and their implications for antiplatelet therapy. Clin. J. Am. Soc. Nephrol. 17, 155–170 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thakur, M. et al. NETs-induced thrombosis impacts on cardiovascular and chronic kidney disease. Circ. Res. 132, 933–949 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruiz-Ortega, M., Rayego-Mateos, S., Lamas, S., Ortiz, A. & Rodrigues-Diez, R. R. Targeting the progression of chronic kidney disease. Nat. Rev. Nephrol. 16, 269–288 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Yeung, C. K., Shen, D. D., Thummel, K. E. & Himmelfarb, J. Effects of chronic kidney disease and uremia on hepatic drug metabolism and transport. Kidney Int. 85, 522–528 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Verbrugge, F. H., Tang, W. H. & Hazen, S. L. Protein carbamylation and cardiovascular disease. Kidney Int. 88, 474–478 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schunk, S. J. et al. Guanidinylated apolipoprotein C3 (ApoC3) associates with kidney and vascular injury. J. Am. Soc. Nephrol. 32, 3146–3160 (2021). This study identified guanidinylated ApoC3 and its association with declining kidney function and cardiovascular events in patients with CKD, and revealed that guanidinylated ApoC3 promoted kidney fibrosis and reduced injury-induced endothelial regeneration in animal models.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Z. et al. Protein carbamylation links inflammation, smoking, uremia and atherogenesis. Nat. Med. 13, 1176–1184 (2007). This report identified the occurrence of protein carbamylation at sites of inflammation and atherosclerotic lesions through MPO-catalyzed oxidation of thiocyanate, and revealed that levels of carbamylated protein lysine residues predict cardiovascular event risk in individuals with largely preserved kidney function.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Delporte, C. et al. Myeloperoxidase-catalyzed oxidation of cyanide to cyanate: a potential carbamylation route involved in the formation of atherosclerotic plaques? J. Biol. Chem. 293, 6374–6386 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berg, A. H. et al. Carbamylation of serum albumin as a risk factor for mortality in patients with kidney failure. Sci. Transl. Med. 5, 175ra129 (2013).

    Article 

    Google Scholar
     

  • Kalim, S. et al. Protein carbamylation and the risk of ESKD in patients with CKD. J. Am. Soc. Nephrol. 34, 876–885 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Kalim, S. et al. Longitudinal changes in protein carbamylation and mortality risk after initiation of hemodialysis. Clin. J. Am. Soc. Nephrol. 11, 1809–1816 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koeth, R. A. et al. Protein carbamylation predicts mortality in ESRD. J. Am. Soc. Nephrol. 24, 853–861 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taes, Y. E. et al. Guanidino compounds after creatine supplementation in renal failure patients and their relation to inflammatory status. Nephrol. Dial. Transpl. 23, 1330–1335 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Schuett, K. et al. Clot structure: a potent mortality risk factor in patients on hemodialysis. J. Am. Soc. Nephrol. 28, 1622–1630 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Speer, T. et al. Abnormal high-density lipoprotein induces endothelial dysfunction via activation of Toll-like receptor-2. Immunity 38, 754–768 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zewinger, S. et al. Symmetric dimethylarginine, high-density lipoproteins and cardiovascular disease. Eur. Heart J. 38, 1597–1607 (2017). This work reported that the guanidine compound SDMA accumulated in HDL in patients with CKD, rendering HDL into a pro-inflammatory lipoprotein particle associated with increased mortality in CKD.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sies, H. et al. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol. 23, 499–515 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alhamdani, M. S., Al-Kassir, A. H., Jaleel, N. A., Hmood, A. M. & Ali, H. M. Elevated levels of alkanals, alkenals and 4-HO-alkenals in plasma of hemodialysis patients. Am. J. Nephrol. 26, 299–303 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soulage, C. O. et al. Two toxic lipid aldehydes, 4-hydroxy-2-hexenal (4-HHE) and 4-hydroxy-2-nonenal (4-HNE), accumulate in patients with chronic kidney disease. Toxins 12, 567 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miyata, T., Kurokawa, K. & van Ypersele de Strihou, C. Relevance of oxidative and carbonyl stress to long-term uremic complications. Kidney Int. Suppl. 76, S120–S125 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mera, K. et al. Oxidation and carboxy methyl lysine-modification of albumin: possible involvement in the progression of oxidative stress in hemodialysis patients. Hypertens. Res. 28, 973–980 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mitrogianni, Z., Barbouti, A., Galaris, D. & Siamopoulos, K. C. Oxidative modification of albumin in predialysis, hemodialysis, and peritoneal dialysis patients. Nephron Clin. Pract. 113, c234–c240 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Witko-Sarsat, V. et al. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int. 49, 1304–1313 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaneda, H., Taguchi, J., Ogasawara, K., Aizawa, T. & Ohno, M. Increased level of advanced oxidation protein products in patients with coronary artery disease. Atherosclerosis 162, 221–225 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, W., Hou, F. F. & Nie, J. AOPPs and the progression of kidney disease. Kidney Int. Suppl. 4, 102–106 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Valli, A. et al. Overestimation of advanced oxidation protein products in uremic plasma due to presence of triglycerides and other endogenous factors. Clin. Chim. Acta 379, 87–94 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, C. et al. Association between serum advanced oxidation protein products and mortality risk in maintenance hemodialysis patients. J. Transl. Med. 19, 284 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813–820 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dozio, E. et al. Accelerated AGEing: the impact of advanced glycation end products on the prognosis of chronic kidney disease. Antioxidants 12, 584 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stinghen, A. E., Massy, Z. A., Vlassara, H., Striker, G. E. & Boullier, A. Uremic toxicity of advanced glycation end products in CKD. J. Am. Soc. Nephrol. 27, 354–370 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Agalou, S., Ahmed, N., Babaei-Jadidi, R., Dawnay, A. & Thornalley, P. J. Profound mishandling of protein glycation degradation products in uremia and dialysis. J. Am. Soc. Nephrol. 16, 1471–1485 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rabbani, N., Sebekova, K., Sebekova, K. Jr., Heidland, A. & Thornalley, P. J. Accumulation of free adduct glycation, oxidation, and nitration products follows acute loss of renal function. Kidney Int. 72, 1113–1121 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uchiki, T. et al. Glycation-altered proteolysis as a pathobiologic mechanism that links dietary glycemic index, aging, and age-related disease (in nondiabetics). Aging Cell 11, 1–13 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mallipattu, S. K., He, J. C. & Uribarri, J. Role of advanced glycation endproducts and potential therapeutic interventions in dialysis patients. Semin. Dial. 25, 529–538 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramazi, S. & Zahiri, J. Posttranslational modifications in proteins: resources, tools and prediction methods. Database 2021, baab012 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, Y. et al. An overview of the posttranslational modifications and related molecular mechanisms in diabetic nephropathy. Front. Cell Dev. Biol. 9, 630401 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, X., Liu, T., Huang, Y., Dai, Y. & Lin, H. Regulation of transforming growth factor-β signalling by SUMOylation and its role in fibrosis. Open. Biol. 11, 210043 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aranda-Rivera, A. K., Cruz-Gregorio, A., Aparicio-Trejo, O. E. & Pedraza-Chaverri, J. Mitochondrial redox signaling and oxidative stress in kidney diseases. Biomolecules 11, 1144 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, W. J. et al. Association of mitochondrial DNA copy number with risk of progression of kidney disease. Clin. J. Am. Soc. Nephrol. 17, 966–975 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fazzini, F. et al. Mitochondrial DNA copy number is associated with mortality and infections in a large cohort of patients with chronic kidney disease. Kidney Int. 96, 480–488 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Afshinnia, F. et al. Myeloperoxidase levels and its product 3-chlorotyrosine predict chronic kidney disease severity and associated coronary artery disease. Am. J. Nephrol. 46, 73–81 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vanholder, R., Pletinck, A., Schepers, E. & Glorieux, G. Biochemical and clinical impact of organic uremic retention solutes: a comprehensive update. Toxins 10, 33 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harlacher, E., Wollenhaupt, J., Baaten, C. & Noels, H. Impact of uremic toxins on endothelial dysfunction in chronic kidney disease: a systematic review. Int. J. Mol. Sci. 23, 531 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mera, K. et al. The structure and function of oxidized albumin in hemodialysis patients: its role in elevated oxidative stress via neutrophil burst. Biochem. Biophys. Res. Commun. 334, 1322–1328 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rong, G. et al. Advanced oxidation protein products induce apoptosis in podocytes through induction of endoplasmic reticulum stress. J. Physiol. Biochem. 71, 455–470 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iwao, Y. et al. CD36 is one of important receptors promoting renal tubular injury by advanced oxidation protein products. Am. J. Physiol. Renal Physiol. 295, F1871–F1880 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, H. Y. et al. Advanced oxidation protein products accelerate renal fibrosis in a remnant kidney model. J. Am. Soc. Nephrol. 18, 528–538 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marsche, G. et al. Hypochlorite-modified albumin colocalizes with RAGE in the artery wall and promotes MCP-1 expression via the RAGE-Erk1/2 MAP-kinase pathway. FASEB J. 21, 1145–1152 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y. et al. p53 SUMOylation mediates AOPP-induced endothelial senescence and apoptosis evasion. Front. Cardiovasc. Med. 8, 795747 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, S. X. et al. Advanced oxidation protein products accelerate atherosclerosis through promoting oxidative stress and inflammation. Arterioscler. Thromb. Vasc. Biol. 26, 1156–1162 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng, W. et al. Advanced oxidation protein products aggravate cardiac remodeling via cardiomyocyte apoptosis in chronic kidney disease. Am. J. Physiol. Heart Circ. Physiol. 314, H475–H483 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Delporte, C. et al. Impact of myeloperoxidase-LDL interactions on enzyme activity and subsequent posttranslational oxidative modifications of apoB-100. J. Lipid Res. 55, 747–757 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drożdż, D. et al. Oxidative stress biomarkers and left ventricular hypertrophy in children with chronic kidney disease. Oxid. Med. Cell Longev. 2016, 7520231 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Le Master, E. et al. Proatherogenic flow increases endothelial stiffness via enhanced CD36-mediated uptake of oxidized low-density lipoproteins. Arterioscler. Thromb. Vasc. Biol. 38, 64–75 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Soppert, J., Lehrke, M., Marx, N., Jankowski, J. & Noels, H. Lipoproteins and lipids in cardiovascular disease: from mechanistic insights to therapeutic targeting. Adv. Drug Deliv. Rev. 159, 4–33 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hou, J. S. et al. Serum malondialdehyde-modified low-density lipoprotein is a risk factor for central arterial stiffness in maintenance hemodialysis patients. Nutrients 12, 2160 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noels, H., Lehrke, M., Vanholder, R. & Jankowski, J. Lipoproteins and fatty acids in chronic kidney disease: molecular and metabolic alterations. Nat. Rev. Nephrol. 17, 528–542 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moradi, H., Pahl, M. V., Elahimehr, R. & Vaziri, N. D. Impaired antioxidant activity of high-density lipoprotein in chronic kidney disease. Transl. Res. 153, 77–85 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, X. et al. Oxidized high-density lipoprotein impairs the function of human renal proximal tubule epithelial cells through CD36. Int. J. Mol. Med. 34, 564–572 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao, S. et al. Oxidized high density lipoprotein induces macrophage apoptosis via Toll-like receptor 4-dependent CHOP pathway. J. Lipid Res. 58, 164–177 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pérez, L. et al. OxHDL controls LOX-1 expression and plasma membrane localization through a mechanism dependent on NOX/ROS/NF-κB pathway on endothelial cells. Lab. Invest. 99, 421–437 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Honda, H. et al. Oxidized high-density lipoprotein as a risk factor for cardiovascular events in prevalent hemodialysis patients. Atherosclerosis 220, 493–501 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marsche, G. et al. Plasma-advanced oxidation protein products are potent high-density lipoprotein receptor antagonists in vivo. Circ. Res. 104, 750–757 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Eck, M. et al. Increased oxidative stress in scavenger receptor BI knockout mice with dysfunctional HDL. Arterioscler. Thromb. Vasc. Biol. 27, 2413–2419 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Ok, E., Basnakian, A. G., Apostolov, E. O., Barri, Y. M. & Shah, S. V. Carbamylated low-density lipoprotein induces death of endothelial cells: a link to atherosclerosis in patients with kidney disease. Kidney Int. 68, 173–178 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Speer, T. et al. Carbamylated low-density lipoprotein induces endothelial dysfunction. Eur. Heart J. 35, 3021–3032 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Apostolov, E. O., Ray, D., Savenka, A. V., Shah, S. V. & Basnakian, A. G. Chronic uremia stimulates LDL carbamylation and atherosclerosis. J. Am. Soc. Nephrol. 21, 1852–1857 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hörkkö, S., Huttunen, K., Kervinen, K. & Kesäniemi, Y. A. Decreased clearance of uraemic and mildly carbamylated low-density lipoprotein. Eur. J. Clin. Invest. 24, 105–113 (1994).

    Article 
    PubMed 

    Google Scholar
     

  • Sun, J. T. et al. Increased carbamylation level of HDL in end-stage renal disease: carbamylated-HDL attenuated endothelial cell function. Am. J. Physiol. Renal Physiol. 310, F511–F517 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang, C. T. et al. PON-1 carbamylation is enhanced in HDL of uremia patients. J. Food Drug Anal. 27, 542–550 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tan, K. C. B. et al. Carbamylated lipoproteins and progression of diabetic kidney disease. Clin. J. Am. Soc. Nephrol. 15, 359–366 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holzer, M. et al. Protein carbamylation renders high-density lipoprotein dysfunctional. Antioxid. Redox Signal. 14, 2337–2346 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zewinger, S. et al. Serum amyloid A: high-density lipoproteins interaction and cardiovascular risk. Eur. Heart J. 36, 3007–3016 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Schuchardt, M. et al. Dysfunctional high-density lipoprotein activates Toll-like receptors via serum amyloid A in vascular smooth muscle cells. Sci. Rep. 9, 3421 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holzer, M. et al. Uremia alters HDL composition and function. J. Am. Soc. Nephrol. 22, 1631–1641 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shao, B. et al. A cluster of proteins implicated in kidney disease is increased in high-density lipoprotein isolated from hemodialysis subjects. J. Proteome Res. 14, 2792–2806 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weichhart, T. et al. Serum amyloid A in uremic HDL promotes inflammation. J. Am. Soc. Nephrol. 23, 934–947 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Artl, A., Marsche, G., Lestavel, S., Sattler, W. & Malle, E. Role of serum amyloid A during metabolism of acute-phase HDL by macrophages. Arterioscler. Thromb. Vasc. Biol. 20, 763–772 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jaisson, S. et al. Carbamylated albumin is a potent inhibitor of polymorphonuclear neutrophil respiratory burst. FEBS Lett. 581, 1509–1513 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jaisson, S. et al. Impact of carbamylation on type I collagen conformational structure and its ability to activate human polymorphonuclear neutrophils. Chem. Biol. 13, 149–159 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rueth, M. et al. Guanidinylations of albumin decreased binding capacity of hydrophobic metabolites. Acta Physiol. 215, 13–23 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Cohen, M. P., Shea, E., Chen, S. & Shearman, C. W. Glycated albumin increases oxidative stress, activates NF-κ B and extracellular signal-regulated kinase (ERK), and stimulates ERK-dependent transforming growth factor-β1 production in macrophage RAW cells. J. Lab. Clin. Med. 141, 242–249 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Higai, K., Satake, M., Nishioka, H., Azuma, Y. & Matsumoto, K. Glycated human serum albumin enhances macrophage inflammatory protein-1β mRNA expression through protein kinase C-δ and NADPH oxidase in macrophage-like differentiated U937 cells. Biochim. Biophys. Acta 1780, 307–314 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rubenstein, D. A., Maria, Z. & Yin, W. Glycated albumin modulates endothelial cell thrombogenic and inflammatory responses. J. Diabetes Sci. Technol. 5, 703–713 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bucala, R. et al. Modification of low density lipoprotein by advanced glycation end products contributes to the dyslipidemia of diabetes and renal insufficiency. Proc. Natl Acad. Sci. USA 91, 9441–9445 (1994).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hodgkinson, C. P., Laxton, R. C., Patel, K. & Ye, S. Advanced glycation end-product of low density lipoprotein activates the Toll-like 4 receptor pathway implications for diabetic atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 28, 2275–2281 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, C. et al. Damage of uremic myocardium by p-cresyl sulfate and the ameliorative effect of klotho by regulating SIRT6 ubiquitination. Toxicol. Lett. 367, 19–31 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Winnik, S., Auwerx, J., Sinclair, D. A. & Matter, C. M. Protective effects of sirtuins in cardiovascular diseases: from bench to bedside. Eur. Heart J. 36, 3404–3412 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. J., Paneni, F., Stein, S. & Matter, C. M. Modulating sirtuin biology and nicotinamide adenine diphosphate metabolism in cardiovascular disease — from bench to bedside. Front. Physiol. 12, 755060 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grootaert, M. O. J. & Bennett, M. R. Sirtuins in atherosclerosis: guardians of healthspan and therapeutic targets. Nat. Rev. Cardiol. 19, 668–683 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • London, G. M. et al. Arterial media calcification in end-stage renal disease: impact on all-cause and cardiovascular mortality. Nephrol. Dial. Transpl. 18, 1731–1740 (2003).

    Article 

    Google Scholar
     

  • Holmar, J. et al. Uremic toxins affecting cardiovascular calcification: a systematic review. Cells 9, 2428 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, J. T. et al. Oxidized HDL, as a novel biomarker for calcific aortic valve disease, promotes the calcification of aortic valve interstitial cells. J. Cardiovasc. Transl. Res. 12, 560–568 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tanikawa, T., Okada, Y., Tanikawa, R. & Tanaka, Y. Advanced glycation end products induce calcification of vascular smooth muscle cells through RAGE/p38 MAPK. J. Vasc. Res. 46, 572–580 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koike, S. et al. Advanced glycation end-products induce apoptosis of vascular smooth muscle cells: a mechanism for vascular calcification. Int. J. Mol. Sci. 17, 1567 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mori, D. et al. Protein carbamylation exacerbates vascular calcification. Kidney Int. 94, 72–90 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jankowski, V. et al. Carbamylated sortilin associates with cardiovascular calcification in patients with chronic kidney disease. Kidney Int. 101, 574–584 (2022). This study reported that carbamylation of sortilin in patients with CKD was associated with cardiovascular calcification and revealed that, mechanistically, sortilin carbamylation enhanced osteogenic differentiation and calcification of vascular smooth muscle cells, which was further accelerated by sortilin binding to IL-6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alesutan, I. et al. Circulating uromodulin inhibits vascular calcification by interfering with pro-inflammatory cytokine signalling. Cardiovasc. Res. 117, 930–941 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schurgers, L. J. et al. Post-translational modifications regulate matrix Gla protein function: importance for inhibition of vascular smooth muscle cell calcification. J. Thromb. Haemost. 5, 2503–2511 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schurgers, L. J. et al. The circulating inactive form of matrix Gla protein is a surrogate marker for vascular calcification in chronic kidney disease: a preliminary report. Clin. J. Am. Soc. Nephrol. 5, 568–575 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schlieper, G. et al. Circulating nonphosphorylated carboxylated matrix Gla protein predicts survival in ESRD. J. Am. Soc. Nephrol. 22, 387–395 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roumeliotis, S., Dounousi, E., Eleftheriadis, T. & Liakopoulos, V. Association of the inactive circulating matrix Gla protein with vitamin K intake, calcification, mortality, and cardiovascular disease: a review. Int. J. Mol. Sci. 20, 628 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. The ameliorative effect of terpinen-4-ol on ER stress-induced vascular calcification depends on SIRT1-mediated regulation of PERK acetylation. Pharmacol. Res. 170, 105629 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, L. et al. Unspliced XBP1 counteracts β-catenin to inhibit vascular calcification. Circ. Res. 130, 213–229 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carlisle, R. E. et al. TDAG51 induces renal interstitial fibrosis through modulation of TGF-β receptor 1 in chronic kidney disease. Cell Death Dis. 12, 921 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ouyang, L. et al. Indoleamine 2,3-dioxygenase 1 deletion-mediated kynurenine insufficiency in vascular smooth muscle cells exacerbates arterial calcification. Circulation 145, 1784–1798 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vanholder, R., Nigam, S. K., Burtey, S. & Glorieux, G. What if not all metabolites from the uremic toxin generating pathways are toxic? A hypothesis. Toxins 14, 221 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. et al. DUSP26 induces aortic valve calcification by antagonizing MDM2-mediated ubiquitination of DPP4 in human valvular interstitial cells. Eur. Heart J. 42, 2935–2951 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, B. et al. Dipeptidyl peptidase-4 induces aortic valve calcification by inhibiting insulin-like growth factor-1 signaling in valvular interstitial cells. Circulation 135, 1935–1950 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, T. H. et al. OGT-mediated KEAP1 glycosylation accelerates NRF2 degradation leading to high phosphate-induced vascular calcification in chronic kidney disease. Front. Physiol. 11, 1092 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin, D. et al. NRF2-suppressed vascular calcification by regulating the antioxidant pathway in chronic kidney disease. FASEB J. 36, e22098 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yimamu, Y. et al. 25-hydroxyvitamin D-1α-hydroxylase (CYP27B1) induces ectopic calcification. J. Clin. Biochem. Nutr. 71, 103–111 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Torremadé, N. et al. Vascular calcification induced by chronic kidney disease is mediated by an increase of 1α-hydroxylase expression in vascular smooth muscle cells. J. Bone Min. Res. 31, 1865–1876 (2016).

    Article 

    Google Scholar
     

  • Masbuchin, A. N., Rohman, M. S. & Liu, P. Y. Role of glycosylation in vascular calcification. Int. J. Mol. Sci. 22, 9829 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grande, M. T. et al. Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat. Med. 21, 989–997 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gorisse, L. et al. Protein carbamylation is a hallmark of aging. Proc. Natl Acad. Sci. USA 113, 1191–1196 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Desmons, A. et al. Proteasome-dependent degradation of intracellular carbamylated proteins. Aging 11, 3624–3638 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pietrement, C., Gorisse, L., Jaisson, S. & Gillery, P. Chronic increase of urea leads to carbamylated proteins accumulation in tissues in a mouse model of CKD. PLoS One 8, e82506 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jaisson, S. et al. Carbamylation differentially alters type I collagen sensitivity to various collagenases. Matrix Biol. 26, 190–196 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garnotel, R., Sabbah, N., Jaisson, S. & Gillery, P. Enhanced activation of and increased production of matrix metalloproteinase-9 by human blood monocytes upon adhering to carbamylated collagen. FEBS Lett. 563, 13–16 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gilcrease, M. Z. & Hoover, R. L. Human monocyte interactions with non-enzymatically glycated collagen. Diabetologia 35, 160–164 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wolffenbuttel, B. H. et al. Breakers of advanced glycation end products restore large artery properties in experimental diabetes. Proc. Natl Acad. Sci. USA 95, 4630–4634 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sell, D. R. & Monnier, V. M. Molecular basis of arterial stiffening: role of glycation — a mini-review. Gerontology 58, 227–237 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ziyadeh, F. N., Han, D. C., Cohen, J. A., Guo, J. & Cohen, M. P. Glycated albumin stimulates fibronectin gene expression in glomerular mesangial cells: involvement of the transforming growth factor-β system. Kidney Int. 53, 631–638 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, S., Cohen, M. P., Lautenslager, G. T., Shearman, C. W. & Ziyadeh, F. N. Glycated albumin stimulates TGF-β1 production and protein kinase C activity in glomerular endothelial cells. Kidney Int. 59, 673–681 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cohen, M. P. et al. Inhibiting albumin glycation in vivo ameliorates glomerular overexpression of TGF-β1. Kidney Int. 61, 2025–2032 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cohen, M. P. et al. Inhibiting albumin glycation ameliorates diabetic nephropathy in the db/db mouse. Exp. Nephrol. 8, 135–143 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, Q. et al. HUWE1 promotes EGFR ubiquitination and degradation to protect against renal tubulointerstitial fibrosis. FASEB J. 34, 4591–4601 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saritas, T. et al. Disruption of CUL3-mediated ubiquitination causes proximal tubule injury and kidney fibrosis. Sci. Rep. 9, 4596 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y. et al. PTEN-induced partial epithelial-mesenchymal transition drives diabetic kidney disease. J. Clin. Invest. 129, 1129–1151 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hirschey, M. D. et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464, 121–125 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang, H. M. et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat. Med. 21, 37–46 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Sirtuin 3 regulates mitochondrial protein acetylation and metabolism in tubular epithelial cells during renal fibrosis. Cell Death Dis. 12, 847 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, W. et al. Klotho restoration via acetylation of peroxisome proliferation-activated receptor γ reduces the progression of chronic kidney disease. Kidney Int. 92, 669–679 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moreno, J. A. et al. The inflammatory cytokines TWEAK and TNFα reduce renal klotho expression through NFκB. J. Am. Soc. Nephrol. 22, 1315–1325 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, F. & Zhuang, S. Histone acetylation and modifiers in renal fibrosis. Front. Pharmacol. 13, 760308 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rauchman, M. & Griggs, D. Emerging strategies to disrupt the central TGF-β axis in kidney fibrosis. Transl. Res. 209, 90–104 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, J., Zhou, L. & Liu, Y. Cellular senescence in kidney fibrosis: pathologic significance and therapeutic strategies. Front. Pharmacol. 11, 601325 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ebert, T., Tran, N., Schurgers, L., Stenvinkel, P. & Shiels, P. G. Ageing — oxidative stress, PTMs and disease. Mol. Asp. Med. 86, 101099 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Shiels, P. G., McGuinness, D., Eriksson, M., Kooman, J. P. & Stenvinkel, P. The role of epigenetics in renal ageing. Nat. Rev. Nephrol. 13, 471–482 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baaten, C. et al. Platelet function in CKD: a systematic review and meta-analysis. J. Am. Soc. Nephrol. 32, 1583–1598 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pasterk, L. et al. Oxidized plasma albumin promotes platelet-endothelial crosstalk and endothelial tissue factor expression. Sci. Rep. 6, 22104 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Florens, N. et al. CKD increases carbonylation of HDL and is associated with impaired antiaggregant properties. J. Am. Soc. Nephrol. 31, 1462–1477 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baralić, M. et al. Fibrinogen modification and fibrin formation in patients with an end-stage renal disease subjected to peritoneal dialysis. Biochemistry 85, 947–954 (2020).

    PubMed 

    Google Scholar
     

  • Rubenstein, D. A. & Yin, W. Glycated albumin modulates platelet susceptibility to flow induced activation and aggregation. Platelets 20, 206–215 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soaita, I., Yin, W. & Rubenstein, D. A. Glycated albumin modifies platelet adhesion and aggregation responses. Platelets 28, 682–690 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Binder, V. et al. Impact of fibrinogen carbamylation on fibrin clot formation and stability. Thromb. Haemost. 117, 899–910 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Binder, V. et al. Carbamylation of integrin αIIbβ3: the mechanistic link to platelet dysfunction in ESKD. J. Am. Soc. Nephrol. 33, 1841–1856 (2022). This study reported carbamylation of platelet integrin αIIbβ3 in patients with CKD, which interfered with integrin-mediated fibrinogen binding, platelet adhesion and aggregation, and might thus contribute to increased bleeding risk in CKD.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lan, Q. et al. Renal klotho safeguards platelet lifespan in advanced chronic kidney disease through restraining Bcl-xL ubiquitination and degradation. J. Thromb. Haemost. 20, 2972–2987 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chitalia, V. C. et al. Uremic serum and solutes increase post-vascular interventional thrombotic risk through altered stability of smooth muscle cell tissue factor. Circulation 127, 365–376 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Walker, J. A. et al. Indoleamine 2,3-dioxygenase-1, a novel therapeutic target for post-vascular injury thrombosis in CKD. J. Am. Soc. Nephrol. 32, 2834–2850 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kannan, S., Krishnankutty, R. & Souchelnytskyi, S. Novel post-translational modifications in human serum albumin. Protein Pept. Lett. 29, 473–484 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Di Iorio, B. R. et al. Nutritional therapy reduces protein carbamylation through urea lowering in chronic kidney disease. Nephrol. Dial. Transplant. 33, 804–813 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Klahr, S. et al. The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. Modification of diet in Renal Disease Study Group. N. Engl. J. Med. 330, 877–884 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garneata, L., Stancu, A., Dragomir, D., Stefan, G. & Mircescu, G. Ketoanalogue-supplemented vegetarian very low-protein diet and CKD progression. J. Am. Soc. Nephrol. 27, 2164–2176 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, M. et al. The impact of carbamylation and anemia on HbA1c’s association with renal outcomes in patients with diabetes and chronic kidney disease. Diabetes Care 46, 130–137 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nicolas, C. et al. Carbamylation is a competitor of glycation for protein modification in vivo. Diabetes Metab. 44, 160–167 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nicolas, C. et al. Carbamylation and glycation compete for collagen molecular aging in vivo. Sci. Rep. 9, 18291 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weber, C. & Noels, H. Atherosclerosis: current pathogenesis and therapeutic options. Nat. Med. 17, 1410–1422 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05021835 (2024).

  • Jong, J. A. W. et al. A ninhydrin-type urea sorbent for the development of a wearable artificial kidney. Macromol. Biosci. 20, e1900396 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Sternkopf, M. et al. A bifunctional adsorber particle for the removal of hydrophobic uremic toxins from whole blood of renal failure patients. Toxins 11, 389 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalim, S. et al. The effects of parenteral amino acid therapy on protein carbamylation in maintenance hemodialysis patients. J. Ren. Nutr. 25, 388–392 (2015). First proof-of concept investigation of amino acid therapy aimed at reducing protein carbamylation in patients receiving haemodialysis; demonstrated that scavenging reactive metabolites in the plasma of patients receiving haemodialysis can decrease albumin carbamylation.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Delanghe, S., Delanghe, J. R., Speeckaert, R., Van Biesen, W. & Speeckaert, M. M. Mechanisms and consequences of carbamoylation. Nat. Rev. Nephrol. 13, 580–593 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Descamps-Latscha, B. et al. Early prediction of IgA nephropathy progression: proteinuria and AOPP are strong prognostic markers. Kidney Int. 66, 1606–1612 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Descamps-Latscha, B. et al. Advanced oxidation protein products as risk factors for atherosclerotic cardiovascular events in nondiabetic predialysis patients. Am. J. Kidney Dis. 45, 39–47 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, Q. et al. Accumulation of circulating advanced oxidation protein products is an independent risk factor for ischaemic heart disease in maintenance haemodialysis patients. Nephrology 17, 642–649 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng, L. et al. Myeloperoxidase-derived oxidants damage artery wall proteins in an animal model of chronic kidney disease-accelerated atherosclerosis. J. Biol. Chem. 293, 7238–7249 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar