Ferreira-Pego, C. et al. Total fluid intake and its determinants: cross-sectional surveys among adults in 13 countries worldwide. Eur. J. Nutr. 54, 35–43 (2015).
Drewnowski, A., Rehm, C. D. & Constant, F. Water and beverage consumption among adults in the United States: cross-sectional study using data from NHANES 2005-2010. BMC Public Health 13, 1068 (2013).
Institute of Medicine. Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate. (The National Academies Press, Washington, DC, 2005).
Agostoni, C. European Food Safety Association: EFSA panel on dietetic products, nutrition, and allergies (NDA); scientific opinion on dietary reference values for water. EFSA J. 8, 1459 (2010).
Cheuvront, S. N. & Kenefick, R. W. Am I drinking enough? Yes, no, and maybe. J. Am. Coll. Nutr. 35, 185–192 (2016).
Armstrong, L. E. Assessing hydration status: the elusive gold standard. J. Am. Coll. Nutr. 26, 575S–584S (2007).
Perrier, E. T. et al. Hydration for health hypothesis: a narrative review of supporting evidence. Eur. J. Nutr. 60, 1167–1180 (2021).
Roussel, R. et al. Low water intake and risk for new-onset hyperglycemia. Diabetes Care 34, 2551–2554 (2011).
Enhörning, S. et al. Plasma copeptin and the risk of diabetes mellitus. Circulation 121, 2102–2108 (2010).
Enhörning, S. et al. Copeptin, a marker of vasopressin, in abdominal obesity, diabetes and microalbuminuria: the prospective Malmo Diet and Cancer Study cardiovascular cohort. Int. J. Obes. 37, 598–603 (2013).
Wannamethee, S. G. et al. Copeptin, insulin resistance, and risk of incident diabetes in older men. J. Clin. Endocrinol. Metab. 100, 3332–3339 (2015).
Enhörning, S., Hedblad, B., Nilsson, P. M., Engstrom, G. & Melander, O. Copeptin is an independent predictor of diabetic heart disease and death. Am. Heart J. 169, 549–556.e1 (2015).
Abbasi, A. et al. Sex differences in the association between plasma copeptin and incident type 2 diabetes: the Prevention of Renal and Vascular Endstage Disease (PREVEND) study. Diabetologia 55, 1963–1970 (2012).
Roussel, R. et al. Plasma copeptin, AVP gene variants, and incidence of type 2 diabetes in a cohort from the community. J. Clin. Endocrinol. Metab. 101, 2432–2439 (2016).
Schill, F., Timpka, S., Nilsson, P. M., Melander, O. & Enhorning, S. Copeptin as a predictive marker of incident heart failure. ESC Heart Fail. 8, 3180–3188 (2021).
Dmitrieva, N. I., Liu, D., Wu, C. O. & Boehm, M. Middle age serum sodium levels in the upper part of normal range and risk of heart failure. Eur. Heart J. 43, 3335–3348 (2022).
Tasevska, I., Enhorning, S., Persson, M., Nilsson, P. M. & Melander, O. Copeptin predicts coronary artery disease cardiovascular and total mortality. Heart 102, 127–132 (2016).
Clark, W. F. et al. Urine volume and change in estimated GFR in a community-based cohort study. Clin. J. Am. Soc. Nephrol. 6, 2634–2641 (2011).
Allen, M. D., Springer, D. A., Burg, M. B., Boehm, M. & Dmitrieva, N. I. Suboptimal hydration remodels metabolism, promotes degenerative diseases, and shortens life. JCI Insight 4, e130949 (2019).
El Boustany, R. et al. Plasma copeptin and chronic kidney disease risk in 3 European cohorts from the general population. JCI Insight 3, e121479 (2018).
Tasevska, I. et al. Increased levels of copeptin, a surrogate marker of arginine vasopressin, are associated with an increased risk of chronic kidney disease in a general population. Am. J. Nephrol. 44, 22–28 (2016).
Roussel, R. et al. Plasma copeptin and decline in renal function in a cohort from the community: the prospective D.E.S.I.R. study. Am. J. Nephrol. 42, 107–114 (2015).
Kuwabara, M. et al. Increased serum sodium and serum osmolarity are independent risk factors for developing chronic kidney disease; 5 year cohort study. PloS One 12, e0169137 (2017).
Dmitrieva, N. I., Gagarin, A., Liu, D., Wu, C. O. & Boehm, M. Middle-age high normal serum sodium as a risk factor for accelerated biological aging, chronic diseases, and premature mortality. EBioMedicine 87, 104404 (2023).
Oh, S. W. et al. Small increases in plasma sodium are associated with higher risk of mortality in a healthy population. J. Korean Med. Sci. 28, 1034–1040, (2013).
Stookey, J. D., Kavouras, S., Suh, H. & Lang, F. Underhydration is associated with obesity, chronic diseases, and death within 3 to 6 years in the U.S. population aged 51–70 years. Nutrients 12, 905 (2020).
Bourque, C. W. Central mechanisms of osmosensation and systemic osmoregulation. Nat. Rev. Neurosci. 9, 519–531 (2008).
Knepper, M. A., Kwon, T. H. & Nielsen, S. Molecular physiology of water balance. N. Engl. J. Med. 372, 1349–1358 (2015).
Sands, J. M. & Layton, H. E. The physiology of urinary concentration: an update. Semin. Nephrol. 29, 178–195 (2009).
Bankir, L. Antidiuretic action of vasopressin: quantitative aspects and interaction between V1a and V2 receptor-mediated effects. Cardiovasc. Res. 51, 372–390 (2001).
Thornton, S. N. Thirst and hydration: physiology and consequences of dysfunction. Physiol. Behav. 100, 15–21 (2010).
Giebisch, G. & Windhager, E. in: Boron, W. F. (ed.) Medical Physiology: A Cellular and Molecular Approach. (Elsevier, 2009).
Sterns, R. H. Disorders of plasma sodium — causes, consequences, and correction. N. Engl. J. Med. 372, 55–65 (2015).
Verbalis, J. G., Goldsmith, S. R., Greenberg, A., Schrier, R. W. & Sterns, R. H. Hyponatremia treatment guidelines 2007: expert panel recommendations. Am. J. Med. 120, S1–21, (2007).
Noakes, T. D., Wilson, G., Gray, D. A., Lambert, M. I. & Dennis, S. C. Peak rates of diuresis in healthy humans during oral fluid overload. S. Afr. Med. J. 91, 852–857 (2001).
Rangan, G. K. et al. Clinical characteristics and outcomes of hyponatraemia associated with oral water intake in adults: a systematic review. BMJ Open 11, e046539 (2021).
Verbalis, J. G. How does the brain sense osmolality? J. Am. Soc. Nephrol. 18, 3056–3059 (2007).
McKinley, M. J., Denton, D. A. & Weisinger, R. S. Sensors for antidiuresis and thirst–osmoreceptors or CSF sodium detectors? Brain Res. 141, 89–103 (1978).
Verney, E. B. The antidiuretic hormone and the factors which determine its release. Proc. R. Soc. Lond. B Biol. Sci. 135, 25–106 (1947).
Robertson, G. L., Shelton, R. L. & Athar, S. Osmoregulation of vasopressin. Kidney Int. 10, 25–37 (1976).
Zerbe, R. L. & Robertson, G. L. Osmoregulation of thirst and vasopressin secretion in human subjects: effect of various solutes. Am. J. Physiol. 244, E607–614, (1983).
Thompson, C. J., Bland, J., Burd, J. & Baylis, P. H. The osmotic thresholds for thirst and vasopressin release are similar in healthy man. Clin. Sci. 71, 651–656 (1986).
Leib, D. E., Zimmerman, C. A. & Knight, Z. A. Thirst. Curr. Biol. 26, R1260–R1265 (2016).
Pool, A. H. et al. The cellular basis of distinct thirst modalities. Nature 588, 112–117 (2020).
Oka, Y., Ye, M. & Zuker, C. S. Thirst driving and suppressing signals encoded by distinct neural populations in the brain. Nature 520, 349–352 (2015).
Awad, H. et al. Intraoperative hypotension-physiologic basis and future directions. J. Cardiothorac. Vasc. Anesth. 36, 2154–2163 (2022).
Kanaide, H., Ichiki, T., Nishimura, J. & Hirano, K. Cellular mechanism of vasoconstriction induced by angiotensin II: it remains to be determined. Circ. Res. 93, 1015–1017 (2003).
Fitzsimons, J. T. Angiotensin, thirst, and sodium appetite. Physiol. Rev. 78, 583–686 (1998).
Lee, Y. et al. Changes in transepidermal water loss and skin hydration according to expression of aquaporin-3 in psoriasis. Ann. Dermatol. 24, 168–174, (2012).
Akdeniz, M., Gabriel, S., Lichterfeld-Kottner, A., Blume-Peytavi, U. & Kottner, J. Transepidermal water loss in healthy adults: a systematic review and meta-analysis update. Ann. Dermatol. 179, 1049–1055 (2018).
Smith, C. J. & Johnson, J. M. Responses to hyperthermia. Optimizing heat dissipation by convection and evaporation: neural control of skin blood flow and sweating in humans. Auton. Neurosci. 196, 25–36 (2016).
Shibasaki, M. & Crandall, C. G. Mechanisms and controllers of eccrine sweating in humans. Front. Biosci. 2, 685–696 (2010).
Baker, L. B. Physiology of sweat gland function: the roles of sweating and sweat composition in human health. Temperature 6, 211–259 (2019).
Share, L. Role of vasopressin in cardiovascular regulation. Physiol. Rev. 68, 1248–1284 (1988).
Liard, J. F. Vasopressin in cardiovascular control: role of circulating vasopressin. Clin. Sci. 67, 473–481 (1984).
Palmer, B. F. & Clegg, D. J. Extrarenal effects of aldosterone on potassium homeostasis. Kidney360 3, 561–568 (2022).
Bollag, W. B., Aitkens, L., White, J. & Hyndman, K. A. Aquaporin-3 in the epidermis: more than skin deep. Am. J. Physiol. Cell Physiol. 318, C1144–C1153 (2020).
Ma, T. et al. Nephrogenic diabetes insipidus in mice lacking aquaporin-3 water channels. Proc. Natl Acad. Sci. USA 97, 4386–4391 (2000).
Gallazzini, M. & Burg, M. B. What’s new about osmotic regulation of glycerophosphocholine. Physiology 24, 245–249 (2009).
Sawka, M. N., Young, A. J., Francesconi, R. P., Muza, S. R. & Pandolf, K. B. Thermoregulatory and blood responses during exercise at graded hypohydration levels. J. Appl. Physiol. 59, 1394–1401 (1985).
Sawka, M. N., Montain, S. J. & Latzka, W. A. Hydration effects on thermoregulation and performance in the heat. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 128, 679–690 (2001).
Sorensen, C. & Garcia-Trabanino, R. A new era of climate medicine — addressing heat-triggered renal disease. N. Engl. J. Med. 381, 693–696 (2019).
Eichner, E. R. Is heat stress nephropathy a concern for endurance athletes? Curr. Sports Med. Rep. 16, 299–300 (2017).
Levens, N. R. Control of intestinal absorption by the renin-angiotensin system. Am. J. Physiol. 249, G3–15, (1985).
Mobasheri, A., Wray, S. & Marples, D. Distribution of AQP2 and AQP3 water channels in human tissue microarrays. J. Mol. Histol. 36, 1–14 (2005).
Cristia, E., Amat, C., Naftalin, R. J. & Moreto, M. Role of vasopressin in rat distal colon function. J. Physiol. 578, 413–424 (2007).
Donald, J. & Pannabecker, T. in: Hyndman, K. A. & Pannabecker, T. L. (eds.) Sodium and Water Homeostasis: Comparative, Evolutionary and Genetic Models. 191–211 (Springer, 2015).
Takei, Y., Bartolo, R. C., Fujihara, H., Ueta, Y. & Donald, J. A. Water deprivation induces appetite and alters metabolic strategy in Notomys alexis: unique mechanisms for water production in the desert. Proc. Biol. Sci. 279, 2599–2608 (2012).
Koshimizu, T. A. et al. Vasopressin V1a and V1b receptors: from molecules to physiological systems. Physiol. Rev. 92, 1813–1864 (2012).
Mavani, G. P., DeVita, M. V. & Michelis, M. F. A review of the nonpressor and nonantidiuretic actions of the hormone vasopressin. Front. Med. 2, 19 (2015).
Whitton, P. D., Rodrigues, L. M. & Hems, D. A. Stimulation by vasopressin, angiotensin and oxytocin of gluconeogenesis in hepatocyte suspensions. Biochem. J. 176, 893–898 (1978).
Keppens, S. & de Wulf, H. The nature of the hepatic receptors involved in vasopressin-induced glycogenolysis. Biochim. Biophys. Acta 588, 63–69 (1979).
Abu-Basha, E. A., Yibchok-Anun, S. & Hsu, W. H. Glucose dependency of arginine vasopressin-induced insulin and glucagon release from the perfused rat pancreas. Metabolism 51, 1184–1190 (2002).
Rotondo, F. et al. Arginine vasopressin (AVP): a review of its historical perspectives, current research and multifunctional role in the hypothalamo-hypophysial system. Pituitary 19, 345–355 (2016).
Yoshimura, M., Conway-Campbell, B. & Ueta, Y. Arginine vasopressin: direct and indirect action on metabolism. Peptides 142, 170555 (2021).
Gebruers, E. M. The role of the gut in water balance. Ir. J. Med. Sci. 159, 131–136 (1990).
Augustine, V., Lee, S. & Oka, Y. Neural control and modulation of thirst, sodium appetite, and hunger. Cell 180, 25–32 (2020).
Yang, Z., Wang, T. & Oka, Y. Predicting changes in osmolality. Elife 10, e74551 (2021).
Ichiki, T. et al. Sensory representation and detection mechanisms of gut osmolality change. Nature 602, 468–474 (2022).
Lacey, J. et al. A multidisciplinary consensus on dehydration: definitions, diagnostic methods and clinical implications. Ann. Med. 51, 232–251 (2019).
Cheuvront, S. N., Kenefick, R. W., Charkoudian, N. & Sawka, M. N. Physiologic basis for understanding quantitative dehydration assessment. Am. J. Clin. Nutr. 97, 455–462 (2013).
Adrogue, H. J. & Madias, N. E. Primary care — hypernatremia. N. Engl. J. Med. 342, 1493–1499 (2000).
Begg, D. P. Disturbances of thirst and fluid balance associated with aging. Physiol. Behav. 178, 28–34 (2017).
Tanaka, S. et al. Seasonal variation in hydration status among community-dwelling elderly in Japan. Geriatr. Gerontol. Int. 20, 904–910 (2020).
Pontzer, H. et al. Daily energy expenditure through the human life course. Science 373, 808–812 (2021).
Perrier, E. et al. Hydration biomarkers in free-living adults with different levels of habitual fluid consumption. Br. J. Nutr. 109, 1678–1687 (2013).
Perrier, E. et al. Relation between urinary hydration biomarkers and total fluid intake in healthy adults. Eur. J. Clin. Nutr. 67, 939–943 (2013).
Armstrong, L. E., Munoz, C. X. & Armstrong, E. M. Distinguishing low and high water consumers — a paradigm of disease risk. Nutrients 12, 858 (2020).
Balanescu, S. et al. Correlation of plasma copeptin and vasopressin concentrations in hypo-, iso-, and hyperosmolar states. J. Clin. Endocrinol. Metab. 96, 1046–1052 (2011).
Szinnai, G. et al. Changes in plasma copeptin, the c-terminal portion of arginine vasopressin during water deprivation and excess in healthy subjects. J. Clin. Endocrinol. Metab. 92, 3973–3978 (2007).
Nihlen, S. et al. The contribution of plasma urea to total osmolality during iatrogenic fluid reduction in critically Ill patients. Function 3, zqab055 (2022).
Johnson, E. C. et al. Markers of the hydration process during fluid volume modification in women with habitual high or low daily fluid intakes. Eur. J. Appl. Physiol. 115, 1067–1074 (2015).
Johnson, E. C. et al. Hormonal and thirst modulated maintenance of fluid balance in young women with different levels of habitual fluid consumption. Nutrients 8, 302 (2016).
Perrier, E. et al. Circadian variation and responsiveness of hydration biomarkers to changes in daily water intake. Eur. J. Appl. Physiol. 113, 2143–2151 (2013).
Morgenthaler, N. G., Struck, J., Alonso, C. & Bergmann, A. Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin. Chem. 52, 112–119 (2006).
Murray, B. Hydration and physical performance. J. Am. Coll. Nutr. 26, 542S–548S (2007).
Sawka, M. N. et al. American College of Sports Medicine position stand. Exercise and fluid replacement. Med. Sci. Sports Exerc. 39, 377–390 (2007).
Sawka, M. N. & Noakes, T. D. Does dehydration impair exercise performance? Med. Sci. Sports Exerc. 39, 1209–1217 (2007).
Noakes, T. D. What is the evidence that dietary macronutrient composition influences exercise performance? A narrative review. Nutrients 14, 862 (2022).
Adan, A. Cognitive performance and dehydration. J. Am. Coll. Nutr. 31, 71–78 (2012).
Enhorning, S. & Melander, O. The vasopressin system in the risk of diabetes and cardiorenal disease, and hydration as a potential lifestyle intervention. Ann. Nutr. Metab. 72, 21–27 (2018).
Clark, W. F. et al. Hydration and chronic kidney disease progression: a critical review of the evidence. Am. J. Nephrol. 43, 281–292 (2016).
Christ-Crain, M. & Fenske, W. Copeptin in the diagnosis of vasopressin-dependent disorders of fluid homeostasis. Nat. Rev. Endocrinol. 12, 168–176 (2016).
Barnett, R. Type 1 diabetes. Lancet 391, 195 (2018).
DeFronzo, R. A. et al. Type 2 diabetes mellitus. Nat. Rev. Dis. Prim. 1, 15019 (2015).
Vaz de Castro, P. A. S. et al. Nephrogenic diabetes insipidus: a comprehensive overview. J. Pediatr. Endocrinol. Metab. 35, 421–434 (2022).
Christ-Crain, M. et al. Diabetes insipidus. Nat. Rev. Dis. Prim. 5, 54 (2019).
Noda, Y. & Sasaki, S. Updates and perspectives on aquaporin-2 and water balance disorders. Int. J. Mol. Sci. 22, 12950 (2021).
van Gastel, M. D. A. & Torres, V. E. Polycystic kidney disease and the vasopressin pathway. Ann. Nutr. Metab. 70, 43–50 (2017).
Hannon, M. J. & Thompson, C. J. in: Jameson, J. L. et al. (eds) Endocrinology: Adult and Pediatric (Seventh Edition). 298–311.e294 (W.B. Saunders, 2016).
Ridgway, A. et al. Nocturia and chronic kidney disease: systematic review and nominal group technique consensus on primary care assessment and treatment. Eur. Urol. Focus 8, 18–25 (2022).
Duca, L., Sippl, R. & Snell-Bergeon, J. K. Is the risk and nature of CVD the same in type 1 and type 2 diabetes? Curr. Diab. Rep. 13, 350–361 (2013).
Kuo, I. Y. & Chapman, A. B. Polycystins, ADPKD, and cardiovascular disease. Kidney Int. Rep. 5, 396–406 (2020).
Velho, G. et al. Plasma copeptin, kidney outcomes, ischemic heart disease, and all-cause mortality in people with long-standing type 1 diabetes. Diabetes Care 39, 2288–2295 (2016).
Velho, G. et al. Plasma copeptin, kidney disease, and risk for cardiovascular morbidity and mortality in two cohorts of type 2 diabetes. Cardiovasc. Diabetol. 17, 110 (2018).
Villela-Torres, M. L. et al. Copeptin plasma levels are associated with decline of renal function in patients with type 2 diabetes mellitus. Arch. Med. Res. 49, 36–43 (2018).
Jankowski, J., Floege, J., Fliser, D., Bohm, M. & Marx, N. Cardiovascular disease in chronic kidney disease: pathophysiological insights and therapeutic options. Circulation 143, 1157–1172 (2021).
Ishikawa, S. E. Is exaggerated release of arginine vasopressin an endocrine disorder? Pathophysiology and treatment. J. Clin. Med. 6, 102 (2017).
Schrier, R. W. Pathogenesis of sodium and water retention in high-output and low-output cardiac failure, nephrotic syndrome, cirrhosis, and pregnancy (1). N. Engl. J. Med. 319, 1065–1072 (1988).
Schrier, R. W. Pathogenesis of sodium and water retention in high-output and low-output cardiac failure, nephrotic syndrome, cirrhosis, and pregnancy (2). N. Engl. J. Med. 319, 1127–1134 (1988).
Schrier, R. W. Water and sodium retention in edematous disorders: role of vasopressin and aldosterone. Am. J. Med. 119, S47–53 (2006).
Feder, J., Gomez, J. M., Serra-Aguirre, F. & Musso, C. G. Reset osmostat: facts and controversies. Indian J. Nephrol. 29, 232–234 (2019).
Kanbay, M. et al. Antidiuretic hormone and serum osmolarity physiology and related outcomes: what is old, what is new, and what is unknown? J. Clin. Endocrinol. Metab. 104, 5406–5420 (2019).
Dmitrieva, N. I., Rosing, D. R. & Boehm, M. Making decision about fluid intake: increase or not increase. Eur. Heart J. 43, 4438–4439 (2022).
Hew-Butler, T. Arginine vasopressin, fluid balance and exercise: is exercise-associated hyponatraemia a disorder of arginine vasopressin secretion? Sports Med. 40, 459–479 (2010).
Filippone, E. J., Ruzieh, M. & Foy, A. Thiazide-associated hyponatremia: clinical manifestations and pathophysiology. Am. J. Kidney Dis. 75, 256–264 (2020).
McCauley, L. R., Dyer, A. J., Stern, K., Hicks, T. & Nguyen, M. M. Factors influencing fluid intake behavior among kidney stone formers. J. Urol. 187, 1282–1286 (2012).
Spigt, M. G., Knottnerus, J. A., Westerterp, K. R., Olde Rikkert, M. G. & Schayck, C. P. The effects of 6 months of increased water intake on blood sodium, glomerular filtration rate, blood pressure, and quality of life in elderly (aged 55–75) men. J. Am. Geriatr. Soc. 54, 438–443 (2006).
Rangan, G. K. et al. Prescribed water intake in autosomal dominant polycystic kidney disease. NEJM Evid. 1, EVIDoa2100021 (2022).
Clark, W. F. et al. Effect of coaching to increase water intake on kidney function decline in adults with chronic kidney disease: the CKD WIT randomized clinical trial. JAMA 319, 1870–1879 (2018).
Armstrong, L. E. et al. Urinary indices of hydration status. Int. J. Sport Nutr. 4, 265–279 (1994).
Lemetais, G. et al. Effect of increased water intake on plasma copeptin in healthy adults. Eur. J. Nutr. 57, 1883–1890 (2018).
Walti, C., Siegenthaler, J. & Christ-Crain, M. Copeptin levels are independent of ingested nutrient type after standardised meal administration — the CoMEAL study. Biomarkers 19, 557–562 (2014).
Beglinger, S., Drewe, J. & Christ-Crain, M. The circadian rhythm of copeptin, the c-terminal portion of arginine vasopressin. J. Biomark. 2017, 4737082 (2017).
Enhörning, S. et al. Effects of hydration on plasma copeptin, glycemia and gluco-regulatory hormones: a water intervention in humans. Eur. J. Nutr. 58, 315–324 (2019).
ClinicalTrials.gov. US National Library of Medicine. https://classic.clinicaltrials.gov/ct2/show/NCT03422848 (2023).
Enhörning, S. et al. Water supplementation reduces copeptin and plasma glucose in adults with high copeptin: the H2O metabolism pilot study. J. Clin. Endocrinol. Metab. 104, 1917–1925 (2019).
Enhörning, S., Vanhaecke, T., Dolci, A., Perrier, E. T. & Melander, O. Investigation of possible underlying mechanisms behind water-induced glucose reduction in adults with high copeptin. Sci. Rep. 11, 24481 (2021).
Seal, A., Colburn, A. T., Suh, H. & Kavouras, S. A. The acute effect of adequate water intake on glucose regulation in low drinkers. Ann. Nutr. Metab. 77, 33–36 (2021).
Banfalvi, G. Evolution of osmolyte systems. Biochem. Educ. 19, 136–139 (1991).
Yancey, P. H. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J. Exp. Biol. 208, 2819–2830 (2005).
Yancey, P. H., Clark, M. E., Hand, S. C., Bowlus, R. D. & Somero, G. N. Living with water stress: evolution of osmolyte systems. Science 217, 1214–1222 (1982).
Vujovic, P., Chirillo, M. & Silverthorn, D. U. Learning (by) osmosis: an approach to teaching osmolarity and tonicity. Adv. Physiol. Educ. 42, 626–635 (2018).
Burg, M. B. & Ferraris, J. D. Intracellular organic osmolytes: function and regulation. J. Biol. Chem. 283, 7309–7313 (2008).
Ripps, H. & Shen, W. Review: taurine: a “very essential” amino acid. Mol. Vis. 18, 2673–2686 (2012).
Yancey, P. H. & Burg, M. B. Counteracting effects of urea and betaine in mammalian cells in culture. Am. J. Physiol. 258, R198–204, (1990).
Yancey, P. H. & Siebenaller, J. F. Co-evolution of proteins and solutions: protein adaptation versus cytoprotective micromolecules and their roles in marine organisms. J. Exp. Biol. 218, 1880–1896 (2015).
Wahiduzzaman, Hassan, M. I., Islam, A. & Ahmad, F. Urea stress: myo-inositol’s efficacy to counteract destabilization of TIM-β-globin complex by urea is as good as that of the methylamine. Int. J. Biol. Macromol. 151, 1108–1115 (2020).
Ganguly, P., Polak, J., van der Vegt, N. F. A., Heyda, J. & Shea, J. E. Protein stability in TMAO and mixed Urea-TMAO solutions. J. Phys. Chem. B 124, 6181–6197 (2020).
Dmitrieva, N. I., Cai, Q. & Burg, M. B. Cells adapted to high NaCl have many DNA breaks and impaired DNA repair both in cell culture and in vivo. Proc. Natl Acad. Sci. USA 101, 2317–2322 (2004).
Dmitrieva, N. I. & Burg, M. B. Living with DNA breaks is an everyday reality for cells adapted to high NaCl. Cell Cycle 3, 561–563 (2004).
Zhang, Z., Dmitrieva, N. I., Park, J. H., Levine, R. L. & Burg, M. B. High urea and NaCl carbonylate proteins in renal cells in culture and in vivo, and high urea causes 8-oxoguanine lesions in their DNA. Proc. Natl Acad. Sci. USA 101, 9491–9496 (2004).
Dmitrieva, N. I. & Burg, M. B. High NaCl promotes cellular senescence. Cell Cycle 6, 3108–3113 (2007).
Knight, L. S., Piibe, Q., Lambie, I., Perkins, C. & Yancey, P. H. Betaine in the brain: characterization of betaine uptake, its influence on other osmolytes and its potential role in neuroprotection from osmotic stress. Neurochem. Res. 42, 3490–3503 (2017).
Trachtman, H., Yancey, P. H. & Gullans, S. R. Cerebral cell volume regulation during hypernatremia in developing rats. Brain Res. 693, 155–162 (1995).
Fisher, S. K., Cheema, T. A., Foster, D. J. & Heacock, A. M. Volume-dependent osmolyte efflux from neural tissues: regulation by G-protein-coupled receptors. J. Neurochem. 106, 1998–2014 (2008).
Sterns, R. H., Riggs, J. E. & Schochet, S. S. Jr Osmotic demyelination syndrome following correction of hyponatremia. N. Engl. J. Med. 314, 1535–1542 (1986).
Sterns, R. H. Evidence for managing hypernatremia: is it just hyponatremia in reverse? Clin. J. Am. Soc. Nephrol. 14, 645–647 (2019).
Bedford, J. J. & Leader, J. P. Response of tissues of the rat to anisosmolality in vivo. Am. J. Physiol. 264, R1164–1179 (1993).
Chapman, R. A., Suleiman, M. S. & Earm, Y. E. Taurine and the heart. Cardiovasc. Res. 27, 358–363 (1993).
Eley, D. W., Lake, N. & ter Keurs, H. E. Taurine depletion and excitation-contraction coupling in rat myocardium. Circ. Res. 74, 1210–1219 (1994).
Dmitrieva, N. I. & Burg, M. B. Secretion of von Willebrand factor by endothelial cells links sodium to hypercoagulability and thrombosis. Proc. Natl Acad. Sci. USA 111, 6485–6490 (2014).
Sturtzel, C. Endothelial cells. Adv. Exp. Med. Biol. 1003, 71–91 (2017).
Dmitrieva, N. I. & Burg, M. B. Elevated sodium and dehydration stimulate inflammatory signaling in endothelial cells and promote atherosclerosis. PloS One 10, e0128870 (2015).
Ferraris, J. D. & Burg, M. B. Tonicity-dependent regulation of osmoprotective genes in mammalian cells. Contrib. Nephrol. 152, 125–141 (2006).
Choi, S. Y., Lee-Kwon, W. & Kwon, H. M. The evolving role of TonEBP as an immunometabolic stress protein. Nat. Rev. Nephrol. 16, 352–364 (2020).
Lakatta, E. G. & Levy, D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises part I: aging arteries: a “set up” for vascular disease. Circulation 107, 139–146 (2003).
Ferrucci, L. & Fabbri, E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 15, 505–522 (2018).
Favaloro, E. J., Franchini, M. & Lippi, G. Aging hemostasis: changes to laboratory markers of hemostasis as we age — a narrative review. Semin. Thromb. Hemost. 40, 621–633 (2014).
Fabbri, E. et al. Energy metabolism and the burden of multimorbidity in older adults: results from the Baltimore longitudinal study of aging. J. Gerontol. A Biol. Sci. Med. Sci. 70, 1297–1303 (2015).
Jumpertz, R. et al. Higher energy expenditure in humans predicts natural mortality. J. Clin. Endocrinol. Metab. 96, E972–E976 (2011).
Ullrich, K. J., Kramer, K. & Boylan, J. W. Present knowledge of the counter-current system in the mammalian kidney. Prog. Cardiovasc. Dis. 3, 395–431 (1961).
Burg, M. B., Ferraris, J. D. & Dmitrieva, N. I. Cellular response to hyperosmotic stresses. Physiol. Rev. 87, 1441–1474 (2007).
Oberleithner, H. et al. Plasma sodium stiffens vascular endothelium and reduces nitric oxide release. Proc. Natl Acad. Sci. USA 104, 16281–16286 (2007).
Oberleithner, H. et al. Salt overload damages the glycocalyx sodium barrier of vascular endothelium. Pflugers Arch. 462, 519–528 (2011).
Wild, J. et al. Rubbing salt into wounded endothelium: sodium potentiates proatherogenic effects of TNF-alpha under non-uniform shear stress. Thromb. Haemost. 112, 183–195 (2014).
Dmitrieva, N. I., Ferraris, J. D., Norenburg, J. L. & Burg, M. B. The saltiness of the sea breaks DNA in marine invertebrates — possible implications for animal evolution. Cell Cycle 5, 1320–1323 (2006).
Dmitrieva, N. I., Cui, K., Kitchaev, D. A., Zhao, K. & Burg, M. B. DNA double-strand breaks induced by high NaCl occur predominantly in gene deserts. Proc. Natl Acad. Sci. USA 108, 20796–20801 (2011).
Calcinotto, A. et al. Cellular senescence: aging, cancer, and injury. Physiol. Rev. 99, 1047–1078 (2019).
Rajendran, P. et al. The vascular endothelium and human diseases. Int. J. Biol. Sci. 9, 1057–1069 (2013).
Szmygin, H., Szydelko, J. & Matyjaszek-Matuszek, B. Copeptin as a novel biomarker of cardiometabolic syndrome. Endokrynol. Pol. 72, 566–571 (2021).
Aikins, A. O. et al. Cardiovascular neuroendocrinology: emerging role for neurohypophyseal hormones in pathophysiology. Endocrinology 162, bqab082 (2021).
Tanoue, A. et al. The vasopressin V1b receptor critically regulates hypothalamic-pituitary-adrenal axis activity under both stress and resting conditions. J. Clin. Invest. 113, 302–309 (2004).
Spruce, B. A. et al. The effect of vasopressin infusion on glucose metabolism in man. Clin. Endocrinol. 22, 463–468 (1985).
Drew, P. J. et al. The effect of arginine vasopressin on ureagenesis in isolated rat hepatocytes. Clin. Sci. 69, 231–233 (1985).
Taveau, C. et al. Vasopressin and hydration play a major role in the development of glucose intolerance and hepatic steatosis in obese rats. Diabetologia 58, 1081–1090 (2015).
Rabelink, T. J. Renal physiology: burning calories to excrete salt. Nat. Rev. Nephrol. 13, 323–324 (2017).
Marton, A. et al. Organ protection by SGLT2 inhibitors: role of metabolic energy and water conservation. Nat. Rev. Nephrol. 17, 65–77 (2021).
Klein, J. D. & Sands, J. M. Urea transport and clinical potential of urearetics. Curr. Opin. Nephrol. Hypertens. 25, 444–451 (2016).
Liard, J. F., Deriaz, O., Schelling, P. & Thibonnier, M. Cardiac output distribution during vasopressin infusion or dehydration in conscious dogs. Am. J. Physiol. 243, H663–669, (1982).
Hammer, M. & Skagen, K. Effects of small changes of plasma vasopressin on subcutaneous and skeletal muscle blood flow in man. Acta Physiol. Scand. 127, 67–73 (1986).
Just, A. Hypertension due to loss of water. Acta Physiol. 232, e13658 (2021).
Kovarik, J. J. et al. Adaptive physiological water conservation explains hypertension and muscle catabolism in experimental chronic renal failure. Acta Physiol. 232, e13629 (2021).
Wild, J. et al. Aestivation motifs explain hypertension and muscle mass loss in mice with psoriatic skin barrier defect. Acta Physiol. 232, e13628 (2021).
Ogura, T. et al. Contributions of renal water loss and skin water conservation to blood pressure elevation in spontaneously hypertensive rats. Hypertens. Res. 46, 32–39 (2023).
Bie, P. & Evans, R. G. Normotension, hypertension and body fluid regulation: brain and kidney. Acta Physiol. 219, 288–304 (2017).
Cowburn, A. S. et al. HIF isoforms in the skin differentially regulate systemic arterial pressure. Proc. Natl Acad. Sci. USA 110, 17570–17575 (2013).
Manz, F., Johner, S. A., Wentz, A., Boeing, H. & Remer, T. Water balance throughout the adult life span in a German population. Br. J. Nutr. 107, 1673–1681 (2012).
Gao, S. G., Cui, X. Q., Wang, X. J., Burg, M. B. & Dmitrieva, N. I. Cross-sectional positive association of serum lipids and blood pressure with serum sodium within the normal reference range of 135-145 mmol/L. Arterioscler. Thromb. Vasc. Biol. 37, 598 (2017).
Enhorning, S. et al. Plasma copeptin, a unifying factor behind the metabolic syndrome. J. Clin. Endocrinol. Metab. 96, E1065–1072 (2011).
Kim, H. S. et al. Genetic control of blood pressure and the angiotensinogen locus. Proc. Natl Acad. Sci. USA 92, 2735–2739 (1995).
Esther, C. R. Jr. et al. Mice lacking angiotensin-converting enzyme have low blood pressure, renal pathology, and reduced male fertility. Lab. Invest. 74, 953–965 (1996).
Tanimoto, K. et al. Angiotensinogen-deficient mice with hypotension. J. Biol. Chem. 269, 31334–31337 (1994).
Ito, M. et al. Regulation of blood pressure by the type 1A angiotensin II receptor gene. Proc. Natl Acad. Sci. USA 92, 3521–3525 (1995).
Esther, C. R. et al. The critical role of tissue angiotensin-converting enzyme as revealed by gene targeting in mice. J. Clin. Invest. 99, 2375–2385 (1997).
Oliverio, M. I. et al. Abnormal water metabolism in mice lacking the type 1A receptor for ANG II. Am. J. Physiol. Ren. Physiol. 278, F75–82 (2000).
Xue, B., Zhang, Z., Johnson, R. F. & Johnson, A. K. Sensitization of slow pressor angiotensin II (Ang II)-initiated hypertension: induction of sensitization by prior Ang II treatment. Hypertension 59, 459–466 (2012).
Dinh, Q. N. et al. Pressor response to angiotensin II is enhanced in aged mice and associated with inflammation, vasoconstriction and oxidative stress. Aging 9, 1595–1606 (2017).
Daniels, D. Angiotensin II (de)sensitization: fluid intake studies with implications for cardiovascular control. Physiol. Behav. 162, 141–146 (2016).
Krieger, E. M. Mechanisms of complete baroreceptor resetting in hypertension. Drugs 35, 98–103 (1988).
Thrasher, T. N. Arterial baroreceptor input contributes to long-term control of blood pressure. Curr. Hypertens. Rep. 8, 249–254 (2006).
Lohmeier, T. E. & Iliescu, R. The baroreflex as a long-term controller of arterial pressure. Physiology 30, 148–158 (2015).
Benigni, A. et al. Disruption of the Ang II type 1 receptor promotes longevity in mice. J. Clin. Invest. 119, 524–530 (2009).
Cassis, P., Conti, S., Remuzzi, G. & Benigni, A. Angiotensin receptors as determinants of life span. Pflugers Arch. 459, 325–332 (2010).
Thornton, S. N. Angiotensin inhibition and longevity: a question of hydration. Pflugers Arch. 461, 317–324 (2011).
Bagnasco, S. M., Uchida, S., Balaban, R. S., Kador, P. F. & Burg, M. B. Induction of aldose reductase and sorbitol in renal inner medullary cells by elevated extracellular NaCl. Proc. Natl Acad. Sci. USA 84, 1718–1720 (1987).
Tang, W. H., Martin, K. A. & Hwa, J. Aldose reductase, oxidative stress, and diabetic mellitus. Front. Pharmacol. 3, 87 (2012).
Gabbay, K. H. The sorbitol pathway and the complications of diabetes. N. Engl. J. Med. 288, 831–836 (1973).
Steele, C., Steel, D. & Waine, C. in: Steele, C., Steel, D. & Waine, C. (eds) Diabetes and the Eye. 59–70 (Butterworth-Heinemann, 2008),
Kitada, K. et al. High salt intake reprioritizes osmolyte and energy metabolism for body fluid conservation. J. Clin. Invest. 127, 1944–1959 (2017).
Baturina, G. S., Katkova, L. E., Schmitt, C. P., Solenov, E. I. & Zarogiannis, S. G. Comparison of isotonic activation of cell volume regulation in rat peritoneal mesothelial cells and in kidney outer medullary collecting duct principal cells. Biomolecules 11, 1452 (2021).
Hultstrom, M. et al. Dehydration is associated with production of organic osmolytes and predicts physical long-term symptoms after COVID-19: a multicenter cohort study. Crit. Care 26, 322 (2022).
Huang, C. T., Chen, M. L., Huang, L. L. & Mao, I. F. Uric acid and urea in human sweat. Chin. J. Physiol. 45, 109–115 (2002).
Withers, P. C. & Guppy, M. Do Australian desert frogs co-accumulate counteracting solutes with urea during aestivation? J. Exp. Biol. 199, 1809–1816 (1996).
Fuery, C. J. et al. Effects of urea on M4-lactate dehydrogenase from elasmobranchs and urea-accumulating Australian desert frogs. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 117, 143–150 (1997).
Hofmeister, L. H., Perisic, S. & Titze, J. Tissue sodium storage: evidence for kidney-like extrarenal countercurrent systems? Pflugers Arch. 467, 551–558 (2015).
Kannenkeril, D. et al. Tissue sodium content in patients with type 2 diabetes mellitus. J. Diabetes Complicat. 33, 485–489 (2019).
Yamada, Y. et al. Variation in human water turnover associated with environmental and lifestyle factors. Science 378, 909–915 (2022).
Robertson, G. L., Mahr, E. A., Athar, S. & Sinha, T. Development and clinical application of a new method for the radioimmunoassay of arginine vasopressin in human plasma. J. Clin. Invest. 52, 2340–2352 (1973).
Shore, A. C. et al. Endocrine and renal response to water loading and water restriction in normal man. Clin. Sci. 75, 171–177 (1988).
Sherwood, L., Klandorf, H. & Yancey, P. H. Animal Physiology: From Genes to Organisms. 2nd Ed. (Brooks/Cole, Cengage Learning, 2013).
Freire, C. A., Cavassin, F., Rodrigues, E. N., Torres, A. H. & McNamara, J. C. Adaptive patterns of osmotic and ionic regulation, and the invasion of fresh water by the palaemonid shrimps. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 136, 771–778 (2003).
Zanders, I. P. Regulation of blood ions in Carcinus maenas (L.). Comp. Biochem. Physiol. Part A: Physiol. 65, 97–108 (1980).
Rasouli, M. Basic concepts and practical equations on osmolality: biochemical approach. Clin. Biochem 49, 936–941 (2016).
Gennari, F. J. Current concepts. Serum osmolality. Uses and limitations. N. Engl. J. Med. 310, 102–105 (1984).
- The Renal Warrior Project. Join Now
- Source: https://www.nature.com/articles/s41581-024-00817-1