Search
Search
Close this search box.

Long-term health outcomes associated with hydration status – Nature Reviews Nephrology

  • Ferreira-Pego, C. et al. Total fluid intake and its determinants: cross-sectional surveys among adults in 13 countries worldwide. Eur. J. Nutr. 54, 35–43 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drewnowski, A., Rehm, C. D. & Constant, F. Water and beverage consumption among adults in the United States: cross-sectional study using data from NHANES 2005-2010. BMC Public Health 13, 1068 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Institute of Medicine. Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate. (The National Academies Press, Washington, DC, 2005).

  • Agostoni, C. European Food Safety Association: EFSA panel on dietetic products, nutrition, and allergies (NDA); scientific opinion on dietary reference values for water. EFSA J. 8, 1459 (2010).


    Google Scholar
     

  • Cheuvront, S. N. & Kenefick, R. W. Am I drinking enough? Yes, no, and maybe. J. Am. Coll. Nutr. 35, 185–192 (2016).

    PubMed 

    Google Scholar
     

  • Armstrong, L. E. Assessing hydration status: the elusive gold standard. J. Am. Coll. Nutr. 26, 575S–584S (2007).

    PubMed 

    Google Scholar
     

  • Perrier, E. T. et al. Hydration for health hypothesis: a narrative review of supporting evidence. Eur. J. Nutr. 60, 1167–1180 (2021).

    PubMed 

    Google Scholar
     

  • Roussel, R. et al. Low water intake and risk for new-onset hyperglycemia. Diabetes Care 34, 2551–2554 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Enhörning, S. et al. Plasma copeptin and the risk of diabetes mellitus. Circulation 121, 2102–2108 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Enhörning, S. et al. Copeptin, a marker of vasopressin, in abdominal obesity, diabetes and microalbuminuria: the prospective Malmo Diet and Cancer Study cardiovascular cohort. Int. J. Obes. 37, 598–603 (2013).


    Google Scholar
     

  • Wannamethee, S. G. et al. Copeptin, insulin resistance, and risk of incident diabetes in older men. J. Clin. Endocrinol. Metab. 100, 3332–3339 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Enhörning, S., Hedblad, B., Nilsson, P. M., Engstrom, G. & Melander, O. Copeptin is an independent predictor of diabetic heart disease and death. Am. Heart J. 169, 549–556.e1 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abbasi, A. et al. Sex differences in the association between plasma copeptin and incident type 2 diabetes: the Prevention of Renal and Vascular Endstage Disease (PREVEND) study. Diabetologia 55, 1963–1970 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Roussel, R. et al. Plasma copeptin, AVP gene variants, and incidence of type 2 diabetes in a cohort from the community. J. Clin. Endocrinol. Metab. 101, 2432–2439 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schill, F., Timpka, S., Nilsson, P. M., Melander, O. & Enhorning, S. Copeptin as a predictive marker of incident heart failure. ESC Heart Fail. 8, 3180–3188 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dmitrieva, N. I., Liu, D., Wu, C. O. & Boehm, M. Middle age serum sodium levels in the upper part of normal range and risk of heart failure. Eur. Heart J. 43, 3335–3348 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tasevska, I., Enhorning, S., Persson, M., Nilsson, P. M. & Melander, O. Copeptin predicts coronary artery disease cardiovascular and total mortality. Heart 102, 127–132 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Clark, W. F. et al. Urine volume and change in estimated GFR in a community-based cohort study. Clin. J. Am. Soc. Nephrol. 6, 2634–2641 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allen, M. D., Springer, D. A., Burg, M. B., Boehm, M. & Dmitrieva, N. I. Suboptimal hydration remodels metabolism, promotes degenerative diseases, and shortens life. JCI Insight 4, e130949 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • El Boustany, R. et al. Plasma copeptin and chronic kidney disease risk in 3 European cohorts from the general population. JCI Insight 3, e121479 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tasevska, I. et al. Increased levels of copeptin, a surrogate marker of arginine vasopressin, are associated with an increased risk of chronic kidney disease in a general population. Am. J. Nephrol. 44, 22–28 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Roussel, R. et al. Plasma copeptin and decline in renal function in a cohort from the community: the prospective D.E.S.I.R. study. Am. J. Nephrol. 42, 107–114 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Kuwabara, M. et al. Increased serum sodium and serum osmolarity are independent risk factors for developing chronic kidney disease; 5 year cohort study. PloS One 12, e0169137 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dmitrieva, N. I., Gagarin, A., Liu, D., Wu, C. O. & Boehm, M. Middle-age high normal serum sodium as a risk factor for accelerated biological aging, chronic diseases, and premature mortality. EBioMedicine 87, 104404 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oh, S. W. et al. Small increases in plasma sodium are associated with higher risk of mortality in a healthy population. J. Korean Med. Sci. 28, 1034–1040, (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stookey, J. D., Kavouras, S., Suh, H. & Lang, F. Underhydration is associated with obesity, chronic diseases, and death within 3 to 6 years in the U.S. population aged 51–70 years. Nutrients 12, 905 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bourque, C. W. Central mechanisms of osmosensation and systemic osmoregulation. Nat. Rev. Neurosci. 9, 519–531 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Knepper, M. A., Kwon, T. H. & Nielsen, S. Molecular physiology of water balance. N. Engl. J. Med. 372, 1349–1358 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sands, J. M. & Layton, H. E. The physiology of urinary concentration: an update. Semin. Nephrol. 29, 178–195 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bankir, L. Antidiuretic action of vasopressin: quantitative aspects and interaction between V1a and V2 receptor-mediated effects. Cardiovasc. Res. 51, 372–390 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Thornton, S. N. Thirst and hydration: physiology and consequences of dysfunction. Physiol. Behav. 100, 15–21 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Giebisch, G. & Windhager, E. in: Boron, W. F. (ed.) Medical Physiology: A Cellular and Molecular Approach. (Elsevier, 2009).

  • Sterns, R. H. Disorders of plasma sodium — causes, consequences, and correction. N. Engl. J. Med. 372, 55–65 (2015).

    PubMed 

    Google Scholar
     

  • Verbalis, J. G., Goldsmith, S. R., Greenberg, A., Schrier, R. W. & Sterns, R. H. Hyponatremia treatment guidelines 2007: expert panel recommendations. Am. J. Med. 120, S1–21, (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Noakes, T. D., Wilson, G., Gray, D. A., Lambert, M. I. & Dennis, S. C. Peak rates of diuresis in healthy humans during oral fluid overload. S. Afr. Med. J. 91, 852–857 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Rangan, G. K. et al. Clinical characteristics and outcomes of hyponatraemia associated with oral water intake in adults: a systematic review. BMJ Open 11, e046539 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verbalis, J. G. How does the brain sense osmolality? J. Am. Soc. Nephrol. 18, 3056–3059 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • McKinley, M. J., Denton, D. A. & Weisinger, R. S. Sensors for antidiuresis and thirst–osmoreceptors or CSF sodium detectors? Brain Res. 141, 89–103 (1978).

    CAS 
    PubMed 

    Google Scholar
     

  • Verney, E. B. The antidiuretic hormone and the factors which determine its release. Proc. R. Soc. Lond. B Biol. Sci. 135, 25–106 (1947).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Robertson, G. L., Shelton, R. L. & Athar, S. Osmoregulation of vasopressin. Kidney Int. 10, 25–37 (1976).

    CAS 
    PubMed 

    Google Scholar
     

  • Zerbe, R. L. & Robertson, G. L. Osmoregulation of thirst and vasopressin secretion in human subjects: effect of various solutes. Am. J. Physiol. 244, E607–614, (1983).

    CAS 
    PubMed 

    Google Scholar
     

  • Thompson, C. J., Bland, J., Burd, J. & Baylis, P. H. The osmotic thresholds for thirst and vasopressin release are similar in healthy man. Clin. Sci. 71, 651–656 (1986).

    CAS 

    Google Scholar
     

  • Leib, D. E., Zimmerman, C. A. & Knight, Z. A. Thirst. Curr. Biol. 26, R1260–R1265 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pool, A. H. et al. The cellular basis of distinct thirst modalities. Nature 588, 112–117 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oka, Y., Ye, M. & Zuker, C. S. Thirst driving and suppressing signals encoded by distinct neural populations in the brain. Nature 520, 349–352 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Awad, H. et al. Intraoperative hypotension-physiologic basis and future directions. J. Cardiothorac. Vasc. Anesth. 36, 2154–2163 (2022).

    PubMed 

    Google Scholar
     

  • Kanaide, H., Ichiki, T., Nishimura, J. & Hirano, K. Cellular mechanism of vasoconstriction induced by angiotensin II: it remains to be determined. Circ. Res. 93, 1015–1017 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Fitzsimons, J. T. Angiotensin, thirst, and sodium appetite. Physiol. Rev. 78, 583–686 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • Lee, Y. et al. Changes in transepidermal water loss and skin hydration according to expression of aquaporin-3 in psoriasis. Ann. Dermatol. 24, 168–174, (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akdeniz, M., Gabriel, S., Lichterfeld-Kottner, A., Blume-Peytavi, U. & Kottner, J. Transepidermal water loss in healthy adults: a systematic review and meta-analysis update. Ann. Dermatol. 179, 1049–1055 (2018).

    CAS 

    Google Scholar
     

  • Smith, C. J. & Johnson, J. M. Responses to hyperthermia. Optimizing heat dissipation by convection and evaporation: neural control of skin blood flow and sweating in humans. Auton. Neurosci. 196, 25–36 (2016).

    PubMed 

    Google Scholar
     

  • Shibasaki, M. & Crandall, C. G. Mechanisms and controllers of eccrine sweating in humans. Front. Biosci. 2, 685–696 (2010).


    Google Scholar
     

  • Baker, L. B. Physiology of sweat gland function: the roles of sweating and sweat composition in human health. Temperature 6, 211–259 (2019).


    Google Scholar
     

  • Share, L. Role of vasopressin in cardiovascular regulation. Physiol. Rev. 68, 1248–1284 (1988).

    CAS 
    PubMed 

    Google Scholar
     

  • Liard, J. F. Vasopressin in cardiovascular control: role of circulating vasopressin. Clin. Sci. 67, 473–481 (1984).

    CAS 

    Google Scholar
     

  • Palmer, B. F. & Clegg, D. J. Extrarenal effects of aldosterone on potassium homeostasis. Kidney360 3, 561–568 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bollag, W. B., Aitkens, L., White, J. & Hyndman, K. A. Aquaporin-3 in the epidermis: more than skin deep. Am. J. Physiol. Cell Physiol. 318, C1144–C1153 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, T. et al. Nephrogenic diabetes insipidus in mice lacking aquaporin-3 water channels. Proc. Natl Acad. Sci. USA 97, 4386–4391 (2000).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gallazzini, M. & Burg, M. B. What’s new about osmotic regulation of glycerophosphocholine. Physiology 24, 245–249 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Sawka, M. N., Young, A. J., Francesconi, R. P., Muza, S. R. & Pandolf, K. B. Thermoregulatory and blood responses during exercise at graded hypohydration levels. J. Appl. Physiol. 59, 1394–1401 (1985).

    CAS 
    PubMed 

    Google Scholar
     

  • Sawka, M. N., Montain, S. J. & Latzka, W. A. Hydration effects on thermoregulation and performance in the heat. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 128, 679–690 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Sorensen, C. & Garcia-Trabanino, R. A new era of climate medicine — addressing heat-triggered renal disease. N. Engl. J. Med. 381, 693–696 (2019).

    PubMed 

    Google Scholar
     

  • Eichner, E. R. Is heat stress nephropathy a concern for endurance athletes? Curr. Sports Med. Rep. 16, 299–300 (2017).

    PubMed 

    Google Scholar
     

  • Levens, N. R. Control of intestinal absorption by the renin-angiotensin system. Am. J. Physiol. 249, G3–15, (1985).

    CAS 
    PubMed 

    Google Scholar
     

  • Mobasheri, A., Wray, S. & Marples, D. Distribution of AQP2 and AQP3 water channels in human tissue microarrays. J. Mol. Histol. 36, 1–14 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Cristia, E., Amat, C., Naftalin, R. J. & Moreto, M. Role of vasopressin in rat distal colon function. J. Physiol. 578, 413–424 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Donald, J. & Pannabecker, T. in: Hyndman, K. A. & Pannabecker, T. L. (eds.) Sodium and Water Homeostasis: Comparative, Evolutionary and Genetic Models. 191–211 (Springer, 2015).

  • Takei, Y., Bartolo, R. C., Fujihara, H., Ueta, Y. & Donald, J. A. Water deprivation induces appetite and alters metabolic strategy in Notomys alexis: unique mechanisms for water production in the desert. Proc. Biol. Sci. 279, 2599–2608 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koshimizu, T. A. et al. Vasopressin V1a and V1b receptors: from molecules to physiological systems. Physiol. Rev. 92, 1813–1864 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Mavani, G. P., DeVita, M. V. & Michelis, M. F. A review of the nonpressor and nonantidiuretic actions of the hormone vasopressin. Front. Med. 2, 19 (2015).


    Google Scholar
     

  • Whitton, P. D., Rodrigues, L. M. & Hems, D. A. Stimulation by vasopressin, angiotensin and oxytocin of gluconeogenesis in hepatocyte suspensions. Biochem. J. 176, 893–898 (1978).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keppens, S. & de Wulf, H. The nature of the hepatic receptors involved in vasopressin-induced glycogenolysis. Biochim. Biophys. Acta 588, 63–69 (1979).

    CAS 
    PubMed 

    Google Scholar
     

  • Abu-Basha, E. A., Yibchok-Anun, S. & Hsu, W. H. Glucose dependency of arginine vasopressin-induced insulin and glucagon release from the perfused rat pancreas. Metabolism 51, 1184–1190 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Rotondo, F. et al. Arginine vasopressin (AVP): a review of its historical perspectives, current research and multifunctional role in the hypothalamo-hypophysial system. Pituitary 19, 345–355 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Yoshimura, M., Conway-Campbell, B. & Ueta, Y. Arginine vasopressin: direct and indirect action on metabolism. Peptides 142, 170555 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gebruers, E. M. The role of the gut in water balance. Ir. J. Med. Sci. 159, 131–136 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • Augustine, V., Lee, S. & Oka, Y. Neural control and modulation of thirst, sodium appetite, and hunger. Cell 180, 25–32 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Z., Wang, T. & Oka, Y. Predicting changes in osmolality. Elife 10, e74551 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ichiki, T. et al. Sensory representation and detection mechanisms of gut osmolality change. Nature 602, 468–474 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lacey, J. et al. A multidisciplinary consensus on dehydration: definitions, diagnostic methods and clinical implications. Ann. Med. 51, 232–251 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheuvront, S. N., Kenefick, R. W., Charkoudian, N. & Sawka, M. N. Physiologic basis for understanding quantitative dehydration assessment. Am. J. Clin. Nutr. 97, 455–462 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Adrogue, H. J. & Madias, N. E. Primary care — hypernatremia. N. Engl. J. Med. 342, 1493–1499 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Begg, D. P. Disturbances of thirst and fluid balance associated with aging. Physiol. Behav. 178, 28–34 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Tanaka, S. et al. Seasonal variation in hydration status among community-dwelling elderly in Japan. Geriatr. Gerontol. Int. 20, 904–910 (2020).

    PubMed 

    Google Scholar
     

  • Pontzer, H. et al. Daily energy expenditure through the human life course. Science 373, 808–812 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perrier, E. et al. Hydration biomarkers in free-living adults with different levels of habitual fluid consumption. Br. J. Nutr. 109, 1678–1687 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Perrier, E. et al. Relation between urinary hydration biomarkers and total fluid intake in healthy adults. Eur. J. Clin. Nutr. 67, 939–943 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Armstrong, L. E., Munoz, C. X. & Armstrong, E. M. Distinguishing low and high water consumers — a paradigm of disease risk. Nutrients 12, 858 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balanescu, S. et al. Correlation of plasma copeptin and vasopressin concentrations in hypo-, iso-, and hyperosmolar states. J. Clin. Endocrinol. Metab. 96, 1046–1052 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Szinnai, G. et al. Changes in plasma copeptin, the c-terminal portion of arginine vasopressin during water deprivation and excess in healthy subjects. J. Clin. Endocrinol. Metab. 92, 3973–3978 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Nihlen, S. et al. The contribution of plasma urea to total osmolality during iatrogenic fluid reduction in critically Ill patients. Function 3, zqab055 (2022).

    PubMed 

    Google Scholar
     

  • Johnson, E. C. et al. Markers of the hydration process during fluid volume modification in women with habitual high or low daily fluid intakes. Eur. J. Appl. Physiol. 115, 1067–1074 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Johnson, E. C. et al. Hormonal and thirst modulated maintenance of fluid balance in young women with different levels of habitual fluid consumption. Nutrients 8, 302 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perrier, E. et al. Circadian variation and responsiveness of hydration biomarkers to changes in daily water intake. Eur. J. Appl. Physiol. 113, 2143–2151 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morgenthaler, N. G., Struck, J., Alonso, C. & Bergmann, A. Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin. Chem. 52, 112–119 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Murray, B. Hydration and physical performance. J. Am. Coll. Nutr. 26, 542S–548S (2007).

    PubMed 

    Google Scholar
     

  • Sawka, M. N. et al. American College of Sports Medicine position stand. Exercise and fluid replacement. Med. Sci. Sports Exerc. 39, 377–390 (2007).

    PubMed 

    Google Scholar
     

  • Sawka, M. N. & Noakes, T. D. Does dehydration impair exercise performance? Med. Sci. Sports Exerc. 39, 1209–1217 (2007).

    PubMed 

    Google Scholar
     

  • Noakes, T. D. What is the evidence that dietary macronutrient composition influences exercise performance? A narrative review. Nutrients 14, 862 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adan, A. Cognitive performance and dehydration. J. Am. Coll. Nutr. 31, 71–78 (2012).

    PubMed 

    Google Scholar
     

  • Enhorning, S. & Melander, O. The vasopressin system in the risk of diabetes and cardiorenal disease, and hydration as a potential lifestyle intervention. Ann. Nutr. Metab. 72, 21–27 (2018).

    PubMed 

    Google Scholar
     

  • Clark, W. F. et al. Hydration and chronic kidney disease progression: a critical review of the evidence. Am. J. Nephrol. 43, 281–292 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Christ-Crain, M. & Fenske, W. Copeptin in the diagnosis of vasopressin-dependent disorders of fluid homeostasis. Nat. Rev. Endocrinol. 12, 168–176 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Barnett, R. Type 1 diabetes. Lancet 391, 195 (2018).

    PubMed 

    Google Scholar
     

  • DeFronzo, R. A. et al. Type 2 diabetes mellitus. Nat. Rev. Dis. Prim. 1, 15019 (2015).

    PubMed 

    Google Scholar
     

  • Vaz de Castro, P. A. S. et al. Nephrogenic diabetes insipidus: a comprehensive overview. J. Pediatr. Endocrinol. Metab. 35, 421–434 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Christ-Crain, M. et al. Diabetes insipidus. Nat. Rev. Dis. Prim. 5, 54 (2019).

    PubMed 

    Google Scholar
     

  • Noda, Y. & Sasaki, S. Updates and perspectives on aquaporin-2 and water balance disorders. Int. J. Mol. Sci. 22, 12950 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Gastel, M. D. A. & Torres, V. E. Polycystic kidney disease and the vasopressin pathway. Ann. Nutr. Metab. 70, 43–50 (2017).

    PubMed 

    Google Scholar
     

  • Hannon, M. J. & Thompson, C. J. in: Jameson, J. L. et al. (eds) Endocrinology: Adult and Pediatric (Seventh Edition). 298–311.e294 (W.B. Saunders, 2016).

  • Ridgway, A. et al. Nocturia and chronic kidney disease: systematic review and nominal group technique consensus on primary care assessment and treatment. Eur. Urol. Focus 8, 18–25 (2022).

    PubMed 

    Google Scholar
     

  • Duca, L., Sippl, R. & Snell-Bergeon, J. K. Is the risk and nature of CVD the same in type 1 and type 2 diabetes? Curr. Diab. Rep. 13, 350–361 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuo, I. Y. & Chapman, A. B. Polycystins, ADPKD, and cardiovascular disease. Kidney Int. Rep. 5, 396–406 (2020).

    PubMed 

    Google Scholar
     

  • Velho, G. et al. Plasma copeptin, kidney outcomes, ischemic heart disease, and all-cause mortality in people with long-standing type 1 diabetes. Diabetes Care 39, 2288–2295 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Velho, G. et al. Plasma copeptin, kidney disease, and risk for cardiovascular morbidity and mortality in two cohorts of type 2 diabetes. Cardiovasc. Diabetol. 17, 110 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Villela-Torres, M. L. et al. Copeptin plasma levels are associated with decline of renal function in patients with type 2 diabetes mellitus. Arch. Med. Res. 49, 36–43 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Jankowski, J., Floege, J., Fliser, D., Bohm, M. & Marx, N. Cardiovascular disease in chronic kidney disease: pathophysiological insights and therapeutic options. Circulation 143, 1157–1172 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ishikawa, S. E. Is exaggerated release of arginine vasopressin an endocrine disorder? Pathophysiology and treatment. J. Clin. Med. 6, 102 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schrier, R. W. Pathogenesis of sodium and water retention in high-output and low-output cardiac failure, nephrotic syndrome, cirrhosis, and pregnancy (1). N. Engl. J. Med. 319, 1065–1072 (1988).

    CAS 
    PubMed 

    Google Scholar
     

  • Schrier, R. W. Pathogenesis of sodium and water retention in high-output and low-output cardiac failure, nephrotic syndrome, cirrhosis, and pregnancy (2). N. Engl. J. Med. 319, 1127–1134 (1988).

    CAS 
    PubMed 

    Google Scholar
     

  • Schrier, R. W. Water and sodium retention in edematous disorders: role of vasopressin and aldosterone. Am. J. Med. 119, S47–53 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Feder, J., Gomez, J. M., Serra-Aguirre, F. & Musso, C. G. Reset osmostat: facts and controversies. Indian J. Nephrol. 29, 232–234 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanbay, M. et al. Antidiuretic hormone and serum osmolarity physiology and related outcomes: what is old, what is new, and what is unknown? J. Clin. Endocrinol. Metab. 104, 5406–5420 (2019).

    PubMed 

    Google Scholar
     

  • Dmitrieva, N. I., Rosing, D. R. & Boehm, M. Making decision about fluid intake: increase or not increase. Eur. Heart J. 43, 4438–4439 (2022).

    PubMed 

    Google Scholar
     

  • Hew-Butler, T. Arginine vasopressin, fluid balance and exercise: is exercise-associated hyponatraemia a disorder of arginine vasopressin secretion? Sports Med. 40, 459–479 (2010).

    PubMed 

    Google Scholar
     

  • Filippone, E. J., Ruzieh, M. & Foy, A. Thiazide-associated hyponatremia: clinical manifestations and pathophysiology. Am. J. Kidney Dis. 75, 256–264 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • McCauley, L. R., Dyer, A. J., Stern, K., Hicks, T. & Nguyen, M. M. Factors influencing fluid intake behavior among kidney stone formers. J. Urol. 187, 1282–1286 (2012).

    PubMed 

    Google Scholar
     

  • Spigt, M. G., Knottnerus, J. A., Westerterp, K. R., Olde Rikkert, M. G. & Schayck, C. P. The effects of 6 months of increased water intake on blood sodium, glomerular filtration rate, blood pressure, and quality of life in elderly (aged 55–75) men. J. Am. Geriatr. Soc. 54, 438–443 (2006).

    PubMed 

    Google Scholar
     

  • Rangan, G. K. et al. Prescribed water intake in autosomal dominant polycystic kidney disease. NEJM Evid. 1, EVIDoa2100021 (2022).

    PubMed 

    Google Scholar
     

  • Clark, W. F. et al. Effect of coaching to increase water intake on kidney function decline in adults with chronic kidney disease: the CKD WIT randomized clinical trial. JAMA 319, 1870–1879 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Armstrong, L. E. et al. Urinary indices of hydration status. Int. J. Sport Nutr. 4, 265–279 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • Lemetais, G. et al. Effect of increased water intake on plasma copeptin in healthy adults. Eur. J. Nutr. 57, 1883–1890 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Walti, C., Siegenthaler, J. & Christ-Crain, M. Copeptin levels are independent of ingested nutrient type after standardised meal administration — the CoMEAL study. Biomarkers 19, 557–562 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Beglinger, S., Drewe, J. & Christ-Crain, M. The circadian rhythm of copeptin, the c-terminal portion of arginine vasopressin. J. Biomark. 2017, 4737082 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Enhörning, S. et al. Effects of hydration on plasma copeptin, glycemia and gluco-regulatory hormones: a water intervention in humans. Eur. J. Nutr. 58, 315–324 (2019).

    PubMed 

    Google Scholar
     

  • ClinicalTrials.gov. US National Library of Medicine. https://classic.clinicaltrials.gov/ct2/show/NCT03422848 (2023).

  • Enhörning, S. et al. Water supplementation reduces copeptin and plasma glucose in adults with high copeptin: the H2O metabolism pilot study. J. Clin. Endocrinol. Metab. 104, 1917–1925 (2019).

    PubMed 

    Google Scholar
     

  • Enhörning, S., Vanhaecke, T., Dolci, A., Perrier, E. T. & Melander, O. Investigation of possible underlying mechanisms behind water-induced glucose reduction in adults with high copeptin. Sci. Rep. 11, 24481 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seal, A., Colburn, A. T., Suh, H. & Kavouras, S. A. The acute effect of adequate water intake on glucose regulation in low drinkers. Ann. Nutr. Metab. 77, 33–36 (2021).

    CAS 

    Google Scholar
     

  • Banfalvi, G. Evolution of osmolyte systems. Biochem. Educ. 19, 136–139 (1991).


    Google Scholar
     

  • Yancey, P. H. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J. Exp. Biol. 208, 2819–2830 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Yancey, P. H., Clark, M. E., Hand, S. C., Bowlus, R. D. & Somero, G. N. Living with water stress: evolution of osmolyte systems. Science 217, 1214–1222 (1982).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Vujovic, P., Chirillo, M. & Silverthorn, D. U. Learning (by) osmosis: an approach to teaching osmolarity and tonicity. Adv. Physiol. Educ. 42, 626–635 (2018).

    PubMed 

    Google Scholar
     

  • Burg, M. B. & Ferraris, J. D. Intracellular organic osmolytes: function and regulation. J. Biol. Chem. 283, 7309–7313 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ripps, H. & Shen, W. Review: taurine: a “very essential” amino acid. Mol. Vis. 18, 2673–2686 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yancey, P. H. & Burg, M. B. Counteracting effects of urea and betaine in mammalian cells in culture. Am. J. Physiol. 258, R198–204, (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • Yancey, P. H. & Siebenaller, J. F. Co-evolution of proteins and solutions: protein adaptation versus cytoprotective micromolecules and their roles in marine organisms. J. Exp. Biol. 218, 1880–1896 (2015).

    PubMed 

    Google Scholar
     

  • Wahiduzzaman, Hassan, M. I., Islam, A. & Ahmad, F. Urea stress: myo-inositol’s efficacy to counteract destabilization of TIM-β-globin complex by urea is as good as that of the methylamine. Int. J. Biol. Macromol. 151, 1108–1115 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Ganguly, P., Polak, J., van der Vegt, N. F. A., Heyda, J. & Shea, J. E. Protein stability in TMAO and mixed Urea-TMAO solutions. J. Phys. Chem. B 124, 6181–6197 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Dmitrieva, N. I., Cai, Q. & Burg, M. B. Cells adapted to high NaCl have many DNA breaks and impaired DNA repair both in cell culture and in vivo. Proc. Natl Acad. Sci. USA 101, 2317–2322 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dmitrieva, N. I. & Burg, M. B. Living with DNA breaks is an everyday reality for cells adapted to high NaCl. Cell Cycle 3, 561–563 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Z., Dmitrieva, N. I., Park, J. H., Levine, R. L. & Burg, M. B. High urea and NaCl carbonylate proteins in renal cells in culture and in vivo, and high urea causes 8-oxoguanine lesions in their DNA. Proc. Natl Acad. Sci. USA 101, 9491–9496 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dmitrieva, N. I. & Burg, M. B. High NaCl promotes cellular senescence. Cell Cycle 6, 3108–3113 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Knight, L. S., Piibe, Q., Lambie, I., Perkins, C. & Yancey, P. H. Betaine in the brain: characterization of betaine uptake, its influence on other osmolytes and its potential role in neuroprotection from osmotic stress. Neurochem. Res. 42, 3490–3503 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Trachtman, H., Yancey, P. H. & Gullans, S. R. Cerebral cell volume regulation during hypernatremia in developing rats. Brain Res. 693, 155–162 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • Fisher, S. K., Cheema, T. A., Foster, D. J. & Heacock, A. M. Volume-dependent osmolyte efflux from neural tissues: regulation by G-protein-coupled receptors. J. Neurochem. 106, 1998–2014 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sterns, R. H., Riggs, J. E. & Schochet, S. S. Jr Osmotic demyelination syndrome following correction of hyponatremia. N. Engl. J. Med. 314, 1535–1542 (1986).

    CAS 
    PubMed 

    Google Scholar
     

  • Sterns, R. H. Evidence for managing hypernatremia: is it just hyponatremia in reverse? Clin. J. Am. Soc. Nephrol. 14, 645–647 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bedford, J. J. & Leader, J. P. Response of tissues of the rat to anisosmolality in vivo. Am. J. Physiol. 264, R1164–1179 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • Chapman, R. A., Suleiman, M. S. & Earm, Y. E. Taurine and the heart. Cardiovasc. Res. 27, 358–363 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • Eley, D. W., Lake, N. & ter Keurs, H. E. Taurine depletion and excitation-contraction coupling in rat myocardium. Circ. Res. 74, 1210–1219 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • Dmitrieva, N. I. & Burg, M. B. Secretion of von Willebrand factor by endothelial cells links sodium to hypercoagulability and thrombosis. Proc. Natl Acad. Sci. USA 111, 6485–6490 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sturtzel, C. Endothelial cells. Adv. Exp. Med. Biol. 1003, 71–91 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Dmitrieva, N. I. & Burg, M. B. Elevated sodium and dehydration stimulate inflammatory signaling in endothelial cells and promote atherosclerosis. PloS One 10, e0128870 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferraris, J. D. & Burg, M. B. Tonicity-dependent regulation of osmoprotective genes in mammalian cells. Contrib. Nephrol. 152, 125–141 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Choi, S. Y., Lee-Kwon, W. & Kwon, H. M. The evolving role of TonEBP as an immunometabolic stress protein. Nat. Rev. Nephrol. 16, 352–364 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Lakatta, E. G. & Levy, D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises part I: aging arteries: a “set up” for vascular disease. Circulation 107, 139–146 (2003).

    PubMed 

    Google Scholar
     

  • Ferrucci, L. & Fabbri, E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 15, 505–522 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Favaloro, E. J., Franchini, M. & Lippi, G. Aging hemostasis: changes to laboratory markers of hemostasis as we age — a narrative review. Semin. Thromb. Hemost. 40, 621–633 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Fabbri, E. et al. Energy metabolism and the burden of multimorbidity in older adults: results from the Baltimore longitudinal study of aging. J. Gerontol. A Biol. Sci. Med. Sci. 70, 1297–1303 (2015).

    PubMed 

    Google Scholar
     

  • Jumpertz, R. et al. Higher energy expenditure in humans predicts natural mortality. J. Clin. Endocrinol. Metab. 96, E972–E976 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ullrich, K. J., Kramer, K. & Boylan, J. W. Present knowledge of the counter-current system in the mammalian kidney. Prog. Cardiovasc. Dis. 3, 395–431 (1961).

    CAS 
    PubMed 

    Google Scholar
     

  • Burg, M. B., Ferraris, J. D. & Dmitrieva, N. I. Cellular response to hyperosmotic stresses. Physiol. Rev. 87, 1441–1474 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Oberleithner, H. et al. Plasma sodium stiffens vascular endothelium and reduces nitric oxide release. Proc. Natl Acad. Sci. USA 104, 16281–16286 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oberleithner, H. et al. Salt overload damages the glycocalyx sodium barrier of vascular endothelium. Pflugers Arch. 462, 519–528 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wild, J. et al. Rubbing salt into wounded endothelium: sodium potentiates proatherogenic effects of TNF-alpha under non-uniform shear stress. Thromb. Haemost. 112, 183–195 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Dmitrieva, N. I., Ferraris, J. D., Norenburg, J. L. & Burg, M. B. The saltiness of the sea breaks DNA in marine invertebrates — possible implications for animal evolution. Cell Cycle 5, 1320–1323 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Dmitrieva, N. I., Cui, K., Kitchaev, D. A., Zhao, K. & Burg, M. B. DNA double-strand breaks induced by high NaCl occur predominantly in gene deserts. Proc. Natl Acad. Sci. USA 108, 20796–20801 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Calcinotto, A. et al. Cellular senescence: aging, cancer, and injury. Physiol. Rev. 99, 1047–1078 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Rajendran, P. et al. The vascular endothelium and human diseases. Int. J. Biol. Sci. 9, 1057–1069 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szmygin, H., Szydelko, J. & Matyjaszek-Matuszek, B. Copeptin as a novel biomarker of cardiometabolic syndrome. Endokrynol. Pol. 72, 566–571 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Aikins, A. O. et al. Cardiovascular neuroendocrinology: emerging role for neurohypophyseal hormones in pathophysiology. Endocrinology 162, bqab082 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tanoue, A. et al. The vasopressin V1b receptor critically regulates hypothalamic-pituitary-adrenal axis activity under both stress and resting conditions. J. Clin. Invest. 113, 302–309 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spruce, B. A. et al. The effect of vasopressin infusion on glucose metabolism in man. Clin. Endocrinol. 22, 463–468 (1985).

    CAS 

    Google Scholar
     

  • Drew, P. J. et al. The effect of arginine vasopressin on ureagenesis in isolated rat hepatocytes. Clin. Sci. 69, 231–233 (1985).

    CAS 

    Google Scholar
     

  • Taveau, C. et al. Vasopressin and hydration play a major role in the development of glucose intolerance and hepatic steatosis in obese rats. Diabetologia 58, 1081–1090 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Rabelink, T. J. Renal physiology: burning calories to excrete salt. Nat. Rev. Nephrol. 13, 323–324 (2017).

    PubMed 

    Google Scholar
     

  • Marton, A. et al. Organ protection by SGLT2 inhibitors: role of metabolic energy and water conservation. Nat. Rev. Nephrol. 17, 65–77 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Klein, J. D. & Sands, J. M. Urea transport and clinical potential of urearetics. Curr. Opin. Nephrol. Hypertens. 25, 444–451 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liard, J. F., Deriaz, O., Schelling, P. & Thibonnier, M. Cardiac output distribution during vasopressin infusion or dehydration in conscious dogs. Am. J. Physiol. 243, H663–669, (1982).

    CAS 
    PubMed 

    Google Scholar
     

  • Hammer, M. & Skagen, K. Effects of small changes of plasma vasopressin on subcutaneous and skeletal muscle blood flow in man. Acta Physiol. Scand. 127, 67–73 (1986).

    CAS 
    PubMed 

    Google Scholar
     

  • Just, A. Hypertension due to loss of water. Acta Physiol. 232, e13658 (2021).

    CAS 

    Google Scholar
     

  • Kovarik, J. J. et al. Adaptive physiological water conservation explains hypertension and muscle catabolism in experimental chronic renal failure. Acta Physiol. 232, e13629 (2021).

    CAS 

    Google Scholar
     

  • Wild, J. et al. Aestivation motifs explain hypertension and muscle mass loss in mice with psoriatic skin barrier defect. Acta Physiol. 232, e13628 (2021).

    CAS 

    Google Scholar
     

  • Ogura, T. et al. Contributions of renal water loss and skin water conservation to blood pressure elevation in spontaneously hypertensive rats. Hypertens. Res. 46, 32–39 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Bie, P. & Evans, R. G. Normotension, hypertension and body fluid regulation: brain and kidney. Acta Physiol. 219, 288–304 (2017).

    CAS 

    Google Scholar
     

  • Cowburn, A. S. et al. HIF isoforms in the skin differentially regulate systemic arterial pressure. Proc. Natl Acad. Sci. USA 110, 17570–17575 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manz, F., Johner, S. A., Wentz, A., Boeing, H. & Remer, T. Water balance throughout the adult life span in a German population. Br. J. Nutr. 107, 1673–1681 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Gao, S. G., Cui, X. Q., Wang, X. J., Burg, M. B. & Dmitrieva, N. I. Cross-sectional positive association of serum lipids and blood pressure with serum sodium within the normal reference range of 135-145 mmol/L. Arterioscler. Thromb. Vasc. Biol. 37, 598 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Enhorning, S. et al. Plasma copeptin, a unifying factor behind the metabolic syndrome. J. Clin. Endocrinol. Metab. 96, E1065–1072 (2011).

    PubMed 

    Google Scholar
     

  • Kim, H. S. et al. Genetic control of blood pressure and the angiotensinogen locus. Proc. Natl Acad. Sci. USA 92, 2735–2739 (1995).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Esther, C. R. Jr. et al. Mice lacking angiotensin-converting enzyme have low blood pressure, renal pathology, and reduced male fertility. Lab. Invest. 74, 953–965 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Tanimoto, K. et al. Angiotensinogen-deficient mice with hypotension. J. Biol. Chem. 269, 31334–31337 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • Ito, M. et al. Regulation of blood pressure by the type 1A angiotensin II receptor gene. Proc. Natl Acad. Sci. USA 92, 3521–3525 (1995).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Esther, C. R. et al. The critical role of tissue angiotensin-converting enzyme as revealed by gene targeting in mice. J. Clin. Invest. 99, 2375–2385 (1997).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oliverio, M. I. et al. Abnormal water metabolism in mice lacking the type 1A receptor for ANG II. Am. J. Physiol. Ren. Physiol. 278, F75–82 (2000).

    CAS 

    Google Scholar
     

  • Xue, B., Zhang, Z., Johnson, R. F. & Johnson, A. K. Sensitization of slow pressor angiotensin II (Ang II)-initiated hypertension: induction of sensitization by prior Ang II treatment. Hypertension 59, 459–466 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Dinh, Q. N. et al. Pressor response to angiotensin II is enhanced in aged mice and associated with inflammation, vasoconstriction and oxidative stress. Aging 9, 1595–1606 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Daniels, D. Angiotensin II (de)sensitization: fluid intake studies with implications for cardiovascular control. Physiol. Behav. 162, 141–146 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krieger, E. M. Mechanisms of complete baroreceptor resetting in hypertension. Drugs 35, 98–103 (1988).

    PubMed 

    Google Scholar
     

  • Thrasher, T. N. Arterial baroreceptor input contributes to long-term control of blood pressure. Curr. Hypertens. Rep. 8, 249–254 (2006).

    PubMed 

    Google Scholar
     

  • Lohmeier, T. E. & Iliescu, R. The baroreflex as a long-term controller of arterial pressure. Physiology 30, 148–158 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benigni, A. et al. Disruption of the Ang II type 1 receptor promotes longevity in mice. J. Clin. Invest. 119, 524–530 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cassis, P., Conti, S., Remuzzi, G. & Benigni, A. Angiotensin receptors as determinants of life span. Pflugers Arch. 459, 325–332 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Thornton, S. N. Angiotensin inhibition and longevity: a question of hydration. Pflugers Arch. 461, 317–324 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Bagnasco, S. M., Uchida, S., Balaban, R. S., Kador, P. F. & Burg, M. B. Induction of aldose reductase and sorbitol in renal inner medullary cells by elevated extracellular NaCl. Proc. Natl Acad. Sci. USA 84, 1718–1720 (1987).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, W. H., Martin, K. A. & Hwa, J. Aldose reductase, oxidative stress, and diabetic mellitus. Front. Pharmacol. 3, 87 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gabbay, K. H. The sorbitol pathway and the complications of diabetes. N. Engl. J. Med. 288, 831–836 (1973).

    CAS 
    PubMed 

    Google Scholar
     

  • Steele, C., Steel, D. & Waine, C. in: Steele, C., Steel, D. & Waine, C. (eds) Diabetes and the Eye. 59–70 (Butterworth-Heinemann, 2008),

  • Kitada, K. et al. High salt intake reprioritizes osmolyte and energy metabolism for body fluid conservation. J. Clin. Invest. 127, 1944–1959 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baturina, G. S., Katkova, L. E., Schmitt, C. P., Solenov, E. I. & Zarogiannis, S. G. Comparison of isotonic activation of cell volume regulation in rat peritoneal mesothelial cells and in kidney outer medullary collecting duct principal cells. Biomolecules 11, 1452 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hultstrom, M. et al. Dehydration is associated with production of organic osmolytes and predicts physical long-term symptoms after COVID-19: a multicenter cohort study. Crit. Care 26, 322 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, C. T., Chen, M. L., Huang, L. L. & Mao, I. F. Uric acid and urea in human sweat. Chin. J. Physiol. 45, 109–115 (2002).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Withers, P. C. & Guppy, M. Do Australian desert frogs co-accumulate counteracting solutes with urea during aestivation? J. Exp. Biol. 199, 1809–1816 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Fuery, C. J. et al. Effects of urea on M4-lactate dehydrogenase from elasmobranchs and urea-accumulating Australian desert frogs. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 117, 143–150 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Hofmeister, L. H., Perisic, S. & Titze, J. Tissue sodium storage: evidence for kidney-like extrarenal countercurrent systems? Pflugers Arch. 467, 551–558 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kannenkeril, D. et al. Tissue sodium content in patients with type 2 diabetes mellitus. J. Diabetes Complicat. 33, 485–489 (2019).


    Google Scholar
     

  • Yamada, Y. et al. Variation in human water turnover associated with environmental and lifestyle factors. Science 378, 909–915 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robertson, G. L., Mahr, E. A., Athar, S. & Sinha, T. Development and clinical application of a new method for the radioimmunoassay of arginine vasopressin in human plasma. J. Clin. Invest. 52, 2340–2352 (1973).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shore, A. C. et al. Endocrine and renal response to water loading and water restriction in normal man. Clin. Sci. 75, 171–177 (1988).

    CAS 

    Google Scholar
     

  • Sherwood, L., Klandorf, H. & Yancey, P. H. Animal Physiology: From Genes to Organisms. 2nd Ed. (Brooks/Cole, Cengage Learning, 2013).

  • Freire, C. A., Cavassin, F., Rodrigues, E. N., Torres, A. H. & McNamara, J. C. Adaptive patterns of osmotic and ionic regulation, and the invasion of fresh water by the palaemonid shrimps. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 136, 771–778 (2003).

    PubMed 

    Google Scholar
     

  • Zanders, I. P. Regulation of blood ions in Carcinus maenas (L.). Comp. Biochem. Physiol. Part A: Physiol. 65, 97–108 (1980).


    Google Scholar
     

  • Rasouli, M. Basic concepts and practical equations on osmolality: biochemical approach. Clin. Biochem 49, 936–941 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Gennari, F. J. Current concepts. Serum osmolality. Uses and limitations. N. Engl. J. Med. 310, 102–105 (1984).

    CAS 
    PubMed 

    Google Scholar