Search
Search
Close this search box.

Klotho is highly expressed in the chief sites of regulated potassium secretion, and it is stimulated by potassium intake – Scientific Reports

  • Kuro-o, M. et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390, 45–51 (1997).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sachdeva, A. et al. Klotho and the treatment of human malignancies. Cancers Basel 12, 1665 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheikhi, A. et al. Klotho: An elephant in aging research. J. Gerontol. A Biol. Sci. Med. Sci. 74, 1031–1042 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rao, Z., Zheng, L., Huang, H., Feng, Y. & Shi, R. alpha-Klotho expression in mouse tissues following acute exhaustive exercise. Front. Physiol. 10, 1498 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, M. C. et al. Renal production, uptake, and handling of circulating alphaKlotho. J. Am. Soc. Nephrol. 27, 79–90 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuro-o, M. Klotho and aging. Biochim. Biophys. Acta 1790, 1049–1058 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lindberg, K. et al. The kidney is the principal organ mediating klotho effects. J. Am. Soc. Nephrol. 25, 2169–2175 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olauson, H. et al. Parathyroid-specific deletion of Klotho unravels a novel calcineurin-dependent FGF23 signaling pathway that regulates PTH secretion. PLoS Genet. 9, e1003975 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, Q. et al. The beta-glucuronidase klotho hydrolyzes and activates the TRPV5 channel. Science 310, 490–493 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, M. C. et al. Klotho: A novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J. 24, 3438–3450 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cha, S. K. et al. Regulation of renal outer medullary potassium channel and renal K(+) excretion by Klotho. Mol. Pharmacol. 76, 38–46 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frindt, G. & Palmer, L. G. Effects of dietary K on cell-surface expression of renal ion channels and transporters. Am. J. Physiol. Renal Physiol. 299, F890-897 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wade, J. B. et al. Differential regulation of ROMK (Kir1.1) in distal nephron segments by dietary potassium. Am. J. Physiol. Renal Physiol. 300, 1385–1393 (2011).

    Article 

    Google Scholar
     

  • Yang, L. et al. ENaC and ROMK channels in the connecting tubule regulate renal K+ secretion. J. Gen. Physiol. 153, 8 (2021).

    Article 

    Google Scholar
     

  • Al-Qusairi, L. et al. Dietary anions control potassium excretion: It is more than a poorly absorbable anion effect. Am. J. Physiol. Renal Physiol. 325, F377–F393 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Terker, A. S. et al. Potassium modulates electrolyte balance and blood pressure through effects on distal cell voltage and chloride. Cell Metab. 21, 39–50 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sorensen, M. V. et al. Rapid dephosphorylation of the renal sodium chloride cotransporter in response to oral potassium intake in mice. Kidney Int. 83, 811–824 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giebisch, G. Renal potassium transport: Mechanisms and regulation. Am. J. Physiol. 274, F817-833 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • McDonough, A. A. & Fenton, R. A. Potassium homeostasis: Sensors, mediators, and targets. Pflugers Arch. 474, 853–867 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Todkar, A. et al. Mechanisms of renal control of potassium homeostasis in complete aldosterone deficiency. J. Am. Soc. Nephrol. 26, 425–438 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Al-Qusairi, L. et al. Renal tubular SGK1 deficiency causes impaired K+ excretion via loss of regulation of NEDD4-2/WNK1 and ENaC. Am. J. Physiol. Renal Physiol. 311, F330-342 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, D. Y. et al. Impaired regulation of renal K+ elimination in the sgk1-knockout mouse. J. Am. Soc. Nephrol. 15, 885–891 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Canonica, J. et al. Adult nephron-specific MR-deficient mice develop a severe renal PHA-1 phenotype. Pflugers Arch. 468, 895–908 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qian, J. et al. Circulating alpha-Klotho is related to plasma aldosterone and its follow-up change predicts CKD progression. Kidney Blood Press. Res. 43, 836–846 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Seigneux, S. & Martin, P. Y. Phosphate and FGF23 in the renoprotective benefit of RAAS inhibition. Pharmacol. Res. 106, 87–91 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Olauson, H. et al. Targeted deletion of Klotho in kidney distal tubule disrupts mineral metabolism. J. Am. Soc. Nephrol. 23, 1641–1651 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ransick, A. et al. Single-cell profiling reveals sex, lineage, and regional diversity in the mouse kidney. Dev. Cell 51, 399–413 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Qusairi, L. et al. Dietary anions control potassium excretion; it is more than a poorly absorbable anion effect. Am. J. Physiol. Renal Physiol. 325, 3 (2023).

    Article 

    Google Scholar
     

  • Chen, C. D., Podvin, S., Gillespie, E., Leeman, S. E. & Abraham, C. R. Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17. Proc. Natl. Acad. Sci. U. S. A. 104, 19796–19801 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Loon, E. P. et al. Shedding of klotho by ADAMs in the kidney. Am. J. Physiol. Renal Physiol. 309, F359-368 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Zachary, M. A. M. A. J. F. Mechanisms and morphology of cellular injury, adaptation, and death. In Pathologic Basis of Veterinary Disease, 6th edition, chapter 1 (Springer, 2017).

  • Munder, M. C. et al. A pH-driven transition of the cytoplasm from a fluid- to a solid-like state promotes entry into dormancy. Elife 5, 896 (2016).

    Article 

    Google Scholar
     

  • Field, M. J., Stanton, B. A. & Giebisch, G. H. Differential acute effects of aldosterone, dexamethasone, and hyperkalemia on distal tubular potassium secretion in the rat kidney. J. Clin. Invest. 74, 1792–1802 (1984).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stanton, B., Pan, L., Deetjen, H., Guckian, V. & Giebisch, G. Independent effects of aldosterone and potassium on induction of potassium adaptation in rat kidney. J. Clin. Invest. 79, 198–206 (1987).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, G. et al. Homeostatic responses in the adrenal cortex to the absence of aldosterone in mice. Endocrinology 146, 2650–2656 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tahaei, E. et al. Pendrin regulation is prioritized by anion in high-potassium diets. Am. J. Physiol. Renal Physiol. 324, F256–F266 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jehle, S., Hulter, H. N. & Krapf, R. Effect of potassium citrate on bone density, microarchitecture, and fracture risk in healthy older adults without osteoporosis: A randomized controlled trial. J. Clin. Endocrinol. Metab. 98, 207–217 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, F. J. et al. Effects of potassium chloride and potassium bicarbonate on endothelial function, cardiovascular risk factors, and bone turnover in mild hypertensives. Hypertension 55, 681–688 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sacks, F. M. et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N. Engl. J. Med. 344, 3–10 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Appel, L. J. et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N. Engl. J. Med. 336, 1117–1124 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Appel, L. J. et al. Dietary approaches to prevent and treat hypertension: A scientific statement from the American Heart Association. Hypertension 47, 296–308 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, F. J. & MacGregor, G. A. Beneficial effects of potassium on human health. Physiol. Plant 133, 725–735 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aaron, K. J. & Sanders, P. W. Role of dietary salt and potassium intake in cardiovascular health and disease: A review of the evidence. Mayo Clin. Proc. 88, 987–995 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang, H. Y. et al. Effect of potassium-enriched salt on cardiovascular mortality and medical expenses of elderly men. Am. J. Clin. Nutr. 83, 1289–1296 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, W. et al. Renal inflammation is modulated by potassium in chronic kidney disease: Possible role of Smad7. Am. J. Physiol. Renal Physiol. 293, F1123-1130 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Association between serum soluble alpha-klotho and bone mineral density (BMD) in middle-aged and older adults in the United States: A population-based cross-sectional study. Aging Clin. Exp. Res. 35, 2039–2049 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Alkalbani, M., Prabhu, G., Lagbo, J. & Qayyum, R. Serum Klotho and pulse pressure; insight from NHANES. Int. J. Cardiol. 355, 54–58 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Keles, N. et al. Is low serum Klotho level associated with alterations in coronary flow reserve?. Echocardiography 33, 881–888 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, J. et al. Association between serum klotho levels and cardiovascular disease risk factors in older adults. BMC Cardiovasc. Disord. 22, 442 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cianciolo, G. et al. Klotho-FGF23, cardiovascular disease, and vascular calcification: Black or white?. Curr. Vasc. Pharmacol. 16, 143–156 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Z. et al. The association between serum soluble Klotho and chronic kidney disease among us adults ages 40 to 79 years: Cross-sectional study. Front. Public Health 10, 995314 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drew, D. A. et al. Association between Soluble Klotho and change in kidney function: The health aging and body composition study. J. Am. Soc. Nephrol. 28, 1859–1866 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hannes-Olauson, R. M., Jan-Luuk, H. & Tobias, E. L. Tissue expression and source of circulating αKlotho. Bone 100, 35 (2017).


    Google Scholar
     

  • Hage, V. et al. In chronic kidney disease, serum alpha-Klotho is related to serum bicarbonate and proteinuria. J. Ren. Nutr. 24, 390–394 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hage, V. et al. Bicarbonate supplement restores urinary klotho excretion in chronic kidney disease: A pilot study. J. Ren. Nutr. 29, 285–288 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pastor Arroyo, E. M. et al. Alkali therapy protects renal function, suppresses inflammation, and improves cellular metabolism in kidney disease. Clin. Sci. (Lond.) 136, 557–577 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, H. et al. Single-cell transcriptomics of a human kidney allograft biopsy specimen defines a diverse inflammatory response. J. Am. Soc. Nephrol. 29, 2069–2080 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, H. et al. Comparative analysis and refinement of human psc-derived kidney organoid differentiation with single-cell transcriptomics. Cell Stem Cell 23, 869–881 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lindstrom, N. O. et al. Conserved and divergent molecular and anatomic features of human and mouse nephron patterning. J. Am. Soc. Nephrol. 29, 825–840 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheval, L., Pierrat, F., Rajerison, R., Piquemal, D. & Doucet, A. Of mice and men: Divergence of gene expression patterns in kidney. PLoS One 7, e46876 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chabardes-Garonne, D. et al. A panoramic view of gene expression in the human kidney. Proc. Natl. Acad. Sci. U. S. A. 100, 13710–13715 (2003).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brownstein, C. A. et al. A translocation causing increased alpha-klotho level results in hypophosphatemic rickets and hyperparathyroidism. Proc. Natl. Acad. Sci. U. S. A. 105, 3455–3460 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ichikawa, S. et al. A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis. J. Clin. Invest. 117, 2684–2691 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin-Nunez, E. et al. A novel heterozygous deletion variant in KLOTHO gene leading to haploinsufficiency and impairment of fibroblast growth factor 23 signaling pathway. J. Clin. Med. 8, 500 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kawaguchi, H. et al. Independent impairment of osteoblast and osteoclast differentiation in klotho mouse exhibiting low-turnover osteopenia. J. Clin. Invest. 104, 229–237 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suga, T. et al. Disruption of the klotho gene causes pulmonary emphysema in mice. Defect in maintenance of pulmonary integrity during postnatal life. Am. J. Respir. Cell Mol. Biol. 22, 26–33 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, S. et al. Failure to maintain full-term pregnancies in pig carrying klotho monoallelic knockout fetuses. BMC Biotechnol. 21, 1 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, L., Frindt, G., Xu, Y., Uchida, S. & Palmer, L. G. Aldosterone-dependent and -independent regulation of Na(+) and K(+) excretion and ENaC in mouse kidneys. Am. J. Physiol. Renal Physiol. 319, F323–F334 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nesterov, V., Bertog, M. & Korbmacher, C. High baseline ROMK activity in the mouse late distal convoluted and early connecting tubule probably contributes to aldosterone-independent K(+) secretion. Am. J. Physiol. Renal Physiol. 322, F42–F54 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fischer, S. S. et al. Hyperaldosteronism in Klotho-deficient mice. Am. J. Physiol. Renal Physiol. 299, F1171-1177 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faresse, N., Vitagliano, J. J. & Staub, O. Differential ubiquitylation of the mineralocorticoid receptor is regulated by phosphorylation. FASEB J. 26, 4373–4382 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wulff, P. et al. Impaired renal Na(+) retention in the sgk1-knockout mouse. J. Clin. Invest. 110, 1263–1268 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Qusairi, L., Basquin, D., Stifanelli, M., Welling, P. A. & Staub, O. Does the early aldosterone-induced SGK1 play a role in early Kaliuresis?. Physiol. Rep. 10, e15188 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Staub, O. et al. Renal-tubular SGK1 is required to achieve blood pressure surge and circadian rhythm. Am. J. Physiol. Renal Physiol. 325, 629 (2023).

    Article 

    Google Scholar
     

  • Barati, A. et al. Eplerenone reduces renal ischaemia/reperfusion injury by modulating Klotho, NF-kappaB and SIRT1/SIRT3/PGC-1alpha signalling pathways. J. Pharm. Pharmacol. 75, 819 (2022).

    Article 

    Google Scholar
     

  • Tang, C. et al. Downregulation of Klotho expression by dehydration. Am. J. Physiol. Renal Physiol. 301, F745-750 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kato, Y. et al. Establishment of the anti-Klotho monoclonal antibodies and detection of Klotho protein in kidneys. Biochem. Biophys. Res. Commun. 267, 597–602 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Al-Qusairi, L., Grimm, P. R., Zapf, A. M. & Welling, P. A. Rapid development of vasopressin resistance in dietary K(+) deficiency. Am. J. Physiol. Renal Physiol. 320, F748–F760 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar