Search
Search
Close this search box.

Kidney volume-to-birth weight ratio as an estimate of nephron endowment in extremely low birth weight preterm infants – Scientific Reports

  • Bertram, J. F., Douglas-Denton, R. N., Diouf, B., Hughson, M. D. & Hoy, W. E. Human nephron number: Implications for health and disease. Pediatr. Nephrol. 26(9), 1529–1533. https://doi.org/10.1007/s00467-011-1843-8 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Reidy, K. J. & Rosenblum, N. D. Cell and molecular biology of kidney development. Semin. Nephrol. 29(4), 321–337. https://doi.org/10.1016/j.semnephrol.2009.03.009 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Selewski, D. T. et al. Neonatal acute kidney injury. Pediatrics 136(2), e463–e473. https://doi.org/10.1542/peds.2014-3819 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Rodriguez, M. M. et al. Histomorphometric analysis of postnatal glomerulogenesis in extremely preterm infants. Pediatr. Dev. Pathol. 7(1), 17–25. https://doi.org/10.1007/s10024-003-3029-2 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Zohdi, V. et al. Low birth weight due to intrauterine growth restriction and/or preterm birth: Effects on nephron number and long-term renal health. Int. J. Nephrol. 2012, 136942. https://doi.org/10.1155/2012/136942 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sinelli, M. et al. Association of intrauterine growth restriction and low birth weight with acute kidney injury in preterm neonates. Pediatr. Nephrol. https://doi.org/10.1007/s00467-023-05936-8 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Juonala, M. et al. Effect of birth weight on life-course blood pressure levels among children born premature: The cardiovascular risk in Young Finns study. J. Hypertens. 33(8), 1542–1548. https://doi.org/10.1097/HJH.0000000000000612 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sutherland, M. R. & Black, M. J. The impact of intrauterine growth restriction and prematurity on nephron endowment. Nat. Rev. Nephrol. 19(4), 218–228. https://doi.org/10.1038/s41581-022-00668-8 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Nada, A., Bonachea, E. M. & Askenazi, D. J. Acute kidney injury in the fetus and neonate. Semin. Fetal Neonatal Med. 22(2), 90–97. https://doi.org/10.1016/j.siny.2016.12.001 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Cataldi, L. et al. Potential risk factors for the development of acute renal failure in preterm newborn infants: A case-control study. Arch. Dis. Child. Fetal Neonatal Ed. 90(6), F514–F519. https://doi.org/10.1136/adc.2004.060434 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, C. C. et al. Incidence and outcomes of acute kidney injury in extremely-low-birth-weight infants. PLoS ONE 12(11), e0187764. https://doi.org/10.1371/journal.pone.0187764 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shalaby, M. A. et al. Incidence, risk factors, and outcome of neonatal acute kidney injury: A prospective cohort study. Pediatr. Nephrol. 33(9), 1617–1624. https://doi.org/10.1007/s00467-018-3966-7 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Puddu, M., Fanos, V., Podda, F. & Zaffanello, M. The kidney from prenatal to adult life: Perinatal programming and reduction of number of nephrons during development. Am. J. Nephrol. 30(2), 162–170. https://doi.org/10.1159/000211324 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Kandasamy, Y., Smith, R. & Wright, I. M. R. Oligonephropathy of prematurity. Am. J. Perinatol. 29(2), 115–120. https://doi.org/10.1055/s-0031-1295651 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Brenner, B. M., Garcia, D. L. & Anderson, S. Glomeruli and blood pressure. Less of one, more the other? Am. J. Hypertens. 1(4 Pt 1), 335–47. https://doi.org/10.1093/ajh/1.4.335 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abitbol, C. L., DeFreitas, M. J. & Strauss, J. Assessment of kidney function in preterm infants: Lifelong implications. Pediatr. Nephrol. 31(12), 2213–2222. https://doi.org/10.1007/s00467-016-3320-x (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Huxley, R. R., Shiell, A. W. & Law, C. M. The role of size at birth and postnatal catch-up growth in determining systolic blood pressure: A systematic review of the literature. J. Hypertens. 18(7), 815–831. https://doi.org/10.1097/00004872-200018070-00002 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zandi-Nejad, K., Luyckx, V. A. & Brenner, B. M. Adult hypertension and kidney disease: The role of fetal programming. Hypertension 47(3), 502–508. https://doi.org/10.1161/01.HYP.0000198544.09909.1a (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Damadian, R. V., Shwayri, E. & Bricker, N. S. On the existence of non-urine forming nephrons in the diseased kidney of the dog. J. Lab. Clin. Med. 65, 26–39 (1965).

    CAS 
    PubMed 

    Google Scholar
     

  • Mañalich, R., Reyes, L., Herrera, M., Melendi, C. & Fundora, I. Relationship between weight at birth and the number and size of renal glomeruli in humans: A histomorphometric study. Kidney Int. 58(2), 770–3. https://doi.org/10.1046/j.1523-1755.2000.00225.x (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Gloor, J. M. et al. Fetal renal growth evaluated by prenatal ultrasound examination. Mayo Clin. Proc. 72(2), 124–129. https://doi.org/10.4065/72.2.124 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Verburg, B. O. et al. Fetal kidney volume and its association with growth and blood flow in fetal life: The generation R study. Kidney Int. 72(6), 754–761. https://doi.org/10.1038/sj.ki.5002420 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Konje, J. C., Okaro, C. I., Bell, S. C., de Chazal, R. & Taylor, D. J. A cross-sectional study of changes in fetal renal size with gestation in appropriate- and small-for-gestational-age fetuses. Ultrasound Obstet. Gynecol. 10(1), 22–26. https://doi.org/10.1046/j.1469-0705.1997.10010022.x (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fukunaga, S. & Fujita, Y. Low glomerular number at birth can lead to the development of chronic kidney disease. Front. Endocrinol. (Lausanne) 14, 1120801. https://doi.org/10.3389/fendo.2023.1120801 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Schmidt, I. M. et al. Impaired kidney growth in low-birth-weight children: Distinct effects of maturity and weight for gestational age. Kidney Int. 68(2), 731–40. https://doi.org/10.1111/j.1523-1755.2005.00451.x (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Bertino, E. et al. Neonatal anthropometric charts: The Italian neonatal study compared with other European studies. J. Pediatr. Gastroenterol. Nutr. 51(3), 353–361. https://doi.org/10.1097/MPG.0b013e3181da213e (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Keijzer-Veen, M. G. et al. Reduced renal length and volume 20 years after very preterm birth. Pediatr. Nephrol. 25(3), 499–507. https://doi.org/10.1007/s00467-009-1371-y (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, J. H., Kim, M. J., Lim, S. H., Kim, J. & Lee, M. J. Length and volume of morphologically normal kidneys in Korean children: Ultrasound measurement and estimation using body size. Korean J. Radiol. 14(4), 677–682. https://doi.org/10.3348/kjr.2013.14.4.677 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahn, Y. Formula and scale for body surface area estimation in high-risk infants. Coll. Antropol. 34(4), 1273–1280 (2010).

    PubMed 

    Google Scholar
     

  • Ahn, Y. & Garruto, R. M. Estimations of body surface area in newborns. Acta Paediatr. 97(3), 366–370. https://doi.org/10.1111/j.1651-2227.2008.00666.x (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Sampaio, F. J. Theoretical kidney volume versus real kidney volume: Comparative evaluation in fetuses. Surg. Radiol. Anat. 17(1), 71–75. https://doi.org/10.1007/BF01629504 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dinkel, E. et al. Kidney size in childhood. Sonographical growth charts for kidney length and volume. Pediatr. Radiol. 15(1), 38–43. https://doi.org/10.1007/BF02387851 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nyengaard, J. R. & Bendtsen, T. F. Glomerular number and size in relation to age, kidney weight, and body surface in normal man. Anat. Rec. 232(2), 194–201. https://doi.org/10.1002/ar.1092320205 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luyckx, V. A. & Brenner, B. M. The clinical importance of nephron mass. J. Am. Soc. Nephrol. 21(6), 898–910. https://doi.org/10.1681/ASN.2009121248 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Singh, G. R. & Hoy, W. E. Kidney volume, blood pressure, and albuminuria: Findings in an Australian aboriginal community. Am. J. Kidney Dis. 43(2), 254–259. https://doi.org/10.1053/j.ajkd.2003.10.015 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Kooijman, M. N. et al. The generation R study: Design and cohort update 2017. Eur. J. Epidemiol. 31(12), 1243–1264. https://doi.org/10.1007/s10654-016-0224-9 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Roderick, P. J. et al. Smaller kidney size at birth in South Asians: Findings from the born in Bradford birth cohort study. Nephrol. Dial. Transplant. 31(3), 455–465. https://doi.org/10.1093/ndt/gfv274 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Hughson, M., Farris, A. B., Douglas-Denton, R., Hoy, W. E. & Bertram, J. F. Glomerular number and size in autopsy kidneys: The relationship to birth weight. Kidney Int. 63(6), 2113–2122. https://doi.org/10.1046/j.1523-1755.2003.00018.x (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Gingrich, A. R. et al. Acute kidney injury surveillance in the high-risk neonatal population following implementation of creatinine screening protocol. Acta Paediatr. 113(4), 692–699. https://doi.org/10.1111/apa.17055 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eichenwald, E. C., Hansen, A. R., Martin, C. & Stark, A. R. Cloherty and Stark’s Manual of Neonatal Care 8th edn. (Wolters Kluwer, 2017).


    Google Scholar
     

  • Luyckx, V. A. et al. Effect of fetal and child health on kidney development and long-term risk of hypertension and kidney disease. Lancet 382(9888), 273–283. https://doi.org/10.1016/S0140-6736(13)60311-6 (2013).

    Article 
    PubMed 

    Google Scholar