Search
Search
Close this search box.

Kidney replacement and conservative therapies in rhabdomyolysis: a retrospective analysis – BMC Nephrology

  • Ronco C, Bellomo R, Kellum JA. Acute kidney injury. Lancet (London, England). 2019;394(10212):1949–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoste EAJ, Bagshaw SM, Bellomo R, Cely CM, Colman R, Cruz DN, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med. 2015;41(8):1411–23.

    Article 
    PubMed 

    Google Scholar
     

  • Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294(7):813–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hill NR, Fatoba ST, Oke JL, Hirst JA, O’Callaghan CA, Lasserson DS, et al. Global prevalence of chronic kidney disease – a systematic review and meta-analysis. PLoS One. 2016;11(7):e0158765.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gameiro J, Marques F, Lopes JA. Long-term consequences of acute kidney injury: a narrative review. Clin Kidney J. 2021;14(3):789–804.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bosch X, Poch E, Grau JM. Rhabdomyolysis and acute kidney injury. N Engl J Med. 2009;361(1):62–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huerta-Alardín AL, Varon J, Marik PE. Bench-to-bedside review: Rhabdomyolysis – An overview for clinicians. Crit Care. 2005;9(2):158–69.

    Article 
    PubMed 

    Google Scholar
     

  • Panizo N, Rubio-Navarro A, Amaro-Villalobos JM, Egido J, Moreno JA. Molecular mechanisms and novel therapeutic approaches to rhabdomyolysis-induced acute kidney injury. Kidney Blood Press Res. 2015;40(5):520–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amyot SL, Leblanc M, Thibeault Y, Geadah D, Cardinal J. Myoglobin clearance and removal during continuous venovenous hemofiltration. Intensive Care Med. 1999;25(10):1169–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang L, Kang Y, Fu P, Cao Y, Shi Y, Liu F, et al. Myoglobin clearance by continuous venous-venous haemofiltration in rhabdomyolysis with acute kidney injury: A case series. Injury. 2012;43(5):619–23.

    Article 
    PubMed 

    Google Scholar
     

  • Naka T, Jones D, Baldwin I, Fealy N, Bates S, Goehl H, et al. Myoglobin clearance by super high-flux hemofiltration in a case of severe rhabdomyolysis: a case report. Crit Care. 2005;9(2):R90–5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weidhase L, de Fallois J, Haußig E, Kaiser T, Mende M, Petros S. Myoglobin clearance with continuous veno-venous hemodialysis using high cutoff dialyzer versus continuous veno-venous hemodiafiltration using high-flux dialyzer: a prospective randomized controlled trial. Crit Care. 2020;24(1):644.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mikkelsen TS, Toft P. Prognostic value, kinetics and effect of CVVHDF on serum of the myoglobin and creatine kinase in critically ill patients with rhabdomyolysis. Acta Anaesthesiol Scand. 2005;49(6):859–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heyne N, Guthoff M, Krieger J, Haap M, Häring HU. High cut-off renal replacement therapy for removal of myoglobin in severe rhabdomyolysis and acute kidney injury: a case series. Nephron Clin Pract. 2012;121(3–4):c159–64.

    CAS 
    PubMed 

    Google Scholar
     

  • Weidhase L, Haussig E, Haussig S, Kaiser T, de Fallois J, Petros S. Middle molecule clearance with high cut-off dialyzer versus high-flux dialyzer using continuous veno-venous hemodialysis with regional citrate anticoagulation: A prospective randomized controlled trial. Isaka Y, editor. PLoS One. 2019;14(4):e0215823.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goubella A, Gankam-Kengne F, Baudoux T, Fagnoul D, Husson C, Delforge ML, et al. Severe myoglobinuric acute kidney injury in a kidney recipient: rapid recovery after hemodialysis with the super high-flux membrane Theralite®. Clin Nephrol. 2017;88(12):359–63.

    Article 
    PubMed 

    Google Scholar
     

  • Premru V, Kovač J, Buturović-Ponikvar J, Ponikvar R. High cut-off membrane hemodiafiltration in myoglobinuric acute renal failure: a case series. Ther Apher Dial. 2011;15(3):287–91.

    Article 
    PubMed 

    Google Scholar
     

  • Dilken O, Ince C, van der Hoven B, Thijsse S, Ormskerk P, De Geus HRH. Successful reduction of creatine kinase and myoglobin levels in severe rhabdomyolysis using extracorporeal blood purification (CytoSorb®). Blood Purif. 2020;49:743–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kousoulas L, Wittel U, Fichtner-Feigl S, Utzolino S. Hemoadsorption in a case of severe septic shock and necrotizing fasciitis caused by nontraumatic renal rupture due to pyelonephritis with obstructive uropathy. Case reports Crit care. 2018;2018:5248901.

    Article 

    Google Scholar
     

  • Scharf C, Liebchen U, Paal M, Irlbeck M, Zoller M, Schroeder I. Blood purification with a cytokine adsorber for the elimination of myoglobin in critically ill patients with severe rhabdomyolysis. Crit Care. 2021;25(1):41.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Albrecht F, Schunk S, Fuchs M, Volk T, Geisel J, Fliser D, et al. Rapid and effective elimination of myoglobin with CytoSorb® hemoadsorber in patients with severe rhabdomyolysis. Blood Purif. 2023;2:1–8.


    Google Scholar
     

  • El-Abdellati E, Eyselbergs M, Sirimsi H, van Hoof V, Wouters K, Verbrugghe W, et al. An observational study on rhabdomyolysis in the intensive care unit exploring its risk factors and main complication: Acute kidney injury. Ann Intensive Care. 2013;3(1):1–8.

    Article 

    Google Scholar
     

  • Kasaoka S, Todani M, Kaneko T, Kawamura Y, Oda Y, Tsuruta R, et al. Peak value of blood myoglobin predicts acute renal failure induced by rhabdomyolysis. J Crit Care. 2010;25(4):601–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marx G, Schindler AW, Mosch C, Albers J, Bauer M, Gnass I, et al. Intravascular volume therapy in adults. Eur J Anaesthesiol. 2016;33:488–521.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sever MS, Vanholder R, RDRTF of ISN Work Group on Recommendations for the Management of Crush Victims in Mass Disasters. Recommendation for the management of crush victims in mass disasters. Nephrol Dial Transplant. 2012;27(Suppl 1):i1–67.

    Article 
    PubMed 

    Google Scholar
     

  • Shigemoto T, Rinka H, Matsuo Y, Kaji A, Tsukioka K, Ukai T, et al. Blood purification for crush syndrome. Ren Fail. 1997;19(5):711–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • KDIGO. Reference Keys. Kidney Int Suppl. 2012;2(1):4.

    Article 

    Google Scholar
     

  • STARRT-AKI Investigators, Canadian Critical Care Trials Group, Australian and New Zealand Intensive Care Society Clinical Trials Group, United Kingdom Critical Care Research Group, Canadian Nephrology Trials Network, Irish Critical Care Trials Group, et al. Timing of initiation of renal-replacement therapy in acute kidney injury. N Engl J Med. 2020;383(3):240–51.

    Article 

    Google Scholar
     

  • Fayad AI, Buamscha DG, Ciapponi A. ntensity of continuous renal replacement therapy for acute kidney injury. In: Fayad AI, editor. Cochrane database of systematic reviews. Chichester: John Wiley & Sons, Ltd; 2013.


    Google Scholar
     

  • Ferreira FL, Bota DP, Bross A, Mélot C, Vincent JL. Serial evaluation of the SOFA score to predict outcome in critically ill patients. JAMA. 2001;286(14):1754–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beck DH, Smith GB, Pappachan JV, Millar B. External validation of the SAPS II, APACHE II and APACHE III prognostic models in South England: a multicentre study. Intensive Care Med. 2003;29(2):249–56.

    Article 
    PubMed 

    Google Scholar
     

  • Tang W, Chen Z, Wu W, Qiu H, Bo H, Zhang L, et al. Renal protective effects of early continuous venovenous hemofiltration in rhabdomyolysis: improved renal mitochondrial dysfunction and inhibited apoptosis. Artif Organs. 2013;37(4):390–400.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McMahon GM, Zeng X, Waikar SS. A risk prediction score for kidney failure or mortality in rhabdomyolysis. JAMA Intern Med. 2013;173(19):1821–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chavez LO, Leon M, Einav S, Varon J. Beyond muscle destruction: a systematic review of rhabdomyolysis for clinical practice. Crit Care. 2016;20(1):135.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vangstad M, Bjornaas MA, Jacobsen D. Rhabdomyolysis: a 10-year retrospective study of patients treated in a medical department. Eur J Emerg Med. 2019;26(3):199–204.

    Article 
    PubMed 

    Google Scholar
     

  • Candela N, Silva S, Georges B, Cartery C, Robert T, Moussi-Frances J, et al. Short- and long-term renal outcomes following severe rhabdomyolysis: a French multicenter retrospective study of 387 patients. Ann Intensive Care. 2020;10(1):27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. 2012;81(5):442–8.

    Article 
    PubMed 

    Google Scholar
     

  • Simpson JP, Taylor A, Sudhan N, Menon DK, Lavinio A. Rhabdomyolysis and acute kidney injury: Creatine kinase as a prognostic marker and validation of the McMahon Score in a 10-year cohort: A retrospective observational evaluation. Eur J Anaesthesiol. 2016;33(12):906–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baeza-Trinidad R, Brea-Hernando A, Morera-Rodriguez S, Brito-Diaz Y, Sanchez-Hernandez S, El Bikri L, et al. Creatinine as predictor value of mortality and acute kidney injury in rhabdomyolysis. Intern Med J. 2015;45(11):1173–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao L, Ran X, Zhong Y, Le Y, Li S. Serum creatine kinase levels are not associated with an increased need for continuous renal replacement therapy in patients with acute kidney injury following rhabdomyolysis. Ren Fail. 2022;44(1):893–901.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13(10):818–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Raith EP, Udy AA, Bailey M, McGloughlin S, MacIsaac C, Bellomo R, et al. Prognostic accuracy of the SOFA score, SIRS criteria, and qSOFA score for in-hospital mortality among adults with suspected infection admitted to the intensive care unit. JAMA. 2017;317(3):290–300.

    Article 
    PubMed 

    Google Scholar
     

  • Petejova N, Martinek A. Acute kidney injury due to rhabdomyolysis and renal replacement therapy: a critical review. Crit Care. 2014;18(3):224.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zimmerman JL, Shen MC. Rhabdomyolysis. Chest. 2013;144(3):1058–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim HW, Kim S, Ohn JH, Kim NH, Lee J, Kim ES, et al. Role of bicarbonate and volume therapy in the prevention of acute kidney injury in rhabdomyolysis: a retrospective propensity score-matched cohort study. Kidney Res Clin Pract. 2022;41(3):310–21.

    Article 
    PubMed 

    Google Scholar
     

  • Sorrentino SA, Kielstein JT, Lukasz A, Sorrentino JN, Gohrbandt B, Haller H, et al. High permeability dialysis membrane allows effective removal of myoglobin in acute kidney injury resulting from rhabdomyolysis. Crit Care Med. 2011;39(1):184–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jerman A, Andonova M, Persic V, Gubensek J. Extracorporeal removal of myoglobin in patients with rhabdomyolysis and acute kidney injury: comparison of high and medium cut-off membrane and an adsorber cartridge. Blood Purif. 2022;51(11):907–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mariano F, Mella A, Rumbolo F, Holló Z, Bergamo D, Congiu G, Mengozzi G, Berardino M, Stella M, Biancone L. Clearance of NT-proBNP and procalcitonin during continuous venovenous hemodialysis with the medium cutoff filter in patients with rhabdomyolysis-associated early acute kidney injury. Blood Purif. 2023;52(5):446–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu C, Mao Z, Kang H, Hu J, Zhou F. Regional citrate versus heparin anticoagulation for continuous renal replacement therapy in critically ill patients: A meta-analysis with trial sequential analysis of randomized controlled trials. Crit Care. 2016;20(1):1–13.

    Article 

    Google Scholar
     

  • Bai M, Zhou M, He L, Ma F, Li Y, Yu Y, et al. Citrate versus heparin anticoagulation for continuous renal replacement therapy: an updated meta-analysis of RCTs. Intensive Care Med. 2015;41(12):2098–110.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zarbock A, Küllmar M, Kindgen-Milles D, Wempe C, Gerss J, Brandenburger T, et al. Effect of regional citrate anticoagulation vs systemic heparin anticoagulation during continuous kidney replacement therapy on dialysis filter life span and mortality among critically ill patients with acute kidney injury: a randomized clinical trial. JAMA. 2020;324(16):1629–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ricci Z, Ronco C, Bachetoni A, D’amico G, Rossi S, Alessandri E, et al. Solute removal during continuous renal replacement therapy in critically ill patients: Convection versus diffusion. Crit Care. 2006;10(2):1–7.

    Article 

    Google Scholar
     

  • Brain M, Winson E, Roodenburg O, McNeil J. Non anti-coagulant factors associated with filter life in continuous renal replacement therapy (CRRT): a systematic review and meta-analysis. BMC Nephrol. 2017;18(1):69.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aslan G, Afsar B, Sag AA, Camkiran V, Erden N, Yilmaz S, et al. The effect of urine pH and urinary uric acid levels on the development of contrast nephropathy. Kidney Blood Press Res. 2020;45(1):131–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reeder BJ, Wilson MT. The effects of pH on the mechanism of hydrogen peroxide and lipid hydroperoxide consumption by myoglobin: a role for the protonated ferryl species. Free Radic Biol Med. 2001;30(11):1311–8.

    Article 
    CAS 
    PubMed 

    Google Scholar