Integrins in the kidney — beyond the matrix – Nature Reviews Nephrology

  • Blanc, T. et al. Three-dimensional architecture of nephrons in the normal and cystic kidney. Kidney Int. 99, 632–645 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mathew, S., Chen, X., Pozzi, A. & Zent, R. Integrins in renal development. Pediatr. Nephrol. 27, 891–900 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Naylor, R. W., Morais, M. & Lennon, R. Complexities of the glomerular basement membrane. Nat. Rev. Nephrol. 17, 112–127 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Borza, C. M., Chen, X., Zent, R. & Pozzi, A. Cell receptor-basement membrane interactions in health and disease: a kidney-centric view. Curr. Top. Membr. 76, 231–253 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pozzi, A. & Zent, R. Integrins in kidney disease. J. Am. Soc. Nephrol. 24, 1034–1039 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, Z., Costell, M. & Fassler, R. Integrin activation by talin, kindlin and mechanical forces. Nat. Cell Biol. 21, 25–31 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moser, M., Legate, K. R., Zent, R. & Fassler, R. The tail of integrins, talin, and kindlins. Science 324, 895–899 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lelongt, B. & Ronco, P. Role of extracellular matrix in kidney development and repair. Pediatr. Nephrol. 18, 731–742 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Scarpellini, A. et al. Syndecan-4 knockout leads to reduced extracellular transglutaminase-2 and protects against tubulointerstitial fibrosis. J. Am. Soc. Nephrol. 25, 1013–1027 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vogel, W. et al. Discoidin domain receptor 1 is activated independently of β1 integrin. J. Biol. Chem. 275, 5779–5784 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dorison, A. & Chantziantoniou, C. DDR1: a major player in renal diseases. Cell Adh. Migr. 12, 299–304 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiusa, M. et al. The extracellular matrix receptor discoidin domain receptor 1 regulates collagen transcription by translocating to the nucleus. J. Am. Soc. Nephrol. 30, 1605–1624 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borza, C. M. et al. DDR1 contributes to kidney inflammation and fibrosis by promoting the phosphorylation of BCR and STAT3. JCI Insight 7, e150887 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borza, C. M., Bolas, G. & Pozzi, A. Genetic and pharmacological tools to study the role of discoidin domain receptors in kidney disease. Front. Pharmacol. 13, 1001122 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nordenfelt, P., Elliott, H. L. & Springer, T. A. Coordinated integrin activation by actin-dependent force during T-cell migration. Nat. Commun. 7, 13119 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J. et al. Ligand binding initiates single-molecule integrin conformational activation. Cell 187, 2990–3005.e17 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Avraham, S., Korin, B., Chung, J. J., Oxburgh, L. & Shaw, A. S. The mesangial cell — the glomerular stromal cell. Nat. Rev. Nephrol. 17, 855–864 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Satchell, S. The role of the glomerular endothelium in albumin handling. Nat. Rev. Nephrol. 9, 717–725 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kreidberg, J. A. & Symons, J. M. Integrins in kidney development, function, and disease. Am. J. Physiol. Renal Physiol. 279, F233–F242 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sachs, N. et al. Kidney failure in mice lacking the tetraspanin CD151. J. Cell Biol. 175, 33–39 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pozzi, A. et al. Beta1 integrin expression by podocytes is required to maintain glomerular structural integrity. Dev. Biol. 316, 288–301 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Has, C. et al. Integrin alpha3 mutations with kidney, lung, and skin disease. N. Engl. J. Med. 366, 1508–1514 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nicolaou, N. et al. Gain of glycosylation in integrin α3 causes lung disease and nephrotic syndrome. J. Clin. Invest. 122, 4375–4387 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sachs, N. et al. Blood pressure influences end-stage renal disease of Cd151 knockout mice. J. Clin. Invest. 122, 348–358 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Remuzzi, A. et al. Role of ultrastructural determinants of glomerular permeability in ultrafiltration function loss. JCI Insight 5, e137249 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naylor, R. W. et al. Basement membrane defects in CD151-associated glomerular disease. Pediatr. Nephrol. 37, 3105–3115 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wright, M. D. et al. Characterization of mice lacking the tetraspanin superfamily member CD151. Mol. Cell Biol. 24, 5978–5988 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bufi, R. & Korstanje, R. The impact of genetic background on mouse models of kidney disease. Kidney Int. 102, 38–44 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gardner, H., Kreidberg, J., Koteliansky, V. & Jaenisch, R. Deletion of integrin α1 by homologous recombination permits normal murine development but gives rise to a specific deficit in cell adhesion. Dev. Biol. 175, 301–313 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cosgrove, D. et al. Integrin α1β1 and transforming growth factor-β1 play distinct roles in Alport glomerular pathogenesis and serve as dual targets for metabolic therapy. Am. J. Pathol. 157, 1649–1659 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zent, R. et al. Glomerular injury is exacerbated in diabetic integrin α1-null mice. Kidney Int. 70, 460–470 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Girgert, R. et al. Integrin α2-deficient mice provide insights into specific functions of collagen receptors in the kidney. Fibrogenes. Tissue Repair. 3, 19 (2010).

    Article 

    Google Scholar
     

  • Wei, C. et al. SuPAR mediates viral response proteinuria by rapidly changing podocyte function. Nat. Commun. 14, 4414 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hayek, S. S. et al. A tripartite complex of suPAR, APOL1 risk variants and αvβ3 integrin on podocytes mediates chronic kidney disease. Nat. Med. 23, 945–953 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei, C. et al. Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis. Nat. Med. 17, 952–960 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gallon, L. & Quaggin, S. E. SuPAR and FSGS: is the jury still out? Nat. Rev. Nephrol. 13, 593 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Sinha, A. et al. Serum-soluble urokinase receptor levels do not distinguish focal segmental glomerulosclerosis from other causes of nephrotic syndrome in children. Kidney Int. 85, 649–658 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sudhini, Y. R., Wei, C. & Reiser, J. suPAR: an inflammatory mediator for kidneys. Kidney Dis. 8, 265–274 (2022).

    Article 

    Google Scholar
     

  • Nusshag, C. et al. suPAR links a dysregulated immune response to tissue inflammation and sepsis-induced acute kidney injury. JCI Insight 8, e165740 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Madhusudhan, T. et al. Podocyte integrin-β3 and activated protein C coordinately restrict RhoA signaling and ameliorate diabetic nephropathy. J. Am. Soc. Nephrol. 31, 1762–1780 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elphick, G. F. et al. Recombinant human activated protein C inhibits integrin-mediated neutrophil migration. Blood 113, 4078–4085 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, B. et al. Single-cell RNA sequencing reveals the mesangial identity and species diversity of glomerular cell transcriptomes. Nat. Commun. 12, 2141 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, X. et al. Lack of integrin α1β1 leads to severe glomerulosclerosis after glomerular injury. Am. J. Pathol. 165, 617–630 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, X. et al. Integrin α1β1 controls reactive oxygen species synthesis by negatively regulating epidermal growth factor receptor-mediated Rac activation. Mol. Cell Biol. 27, 3313–3326 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borza, C. M. et al. Integrin α1β1 promotes caveolin-1 dephosphorylation by activating T cell protein-tyrosine phosphatase. J. Biol. Chem. 285, 40114–40124 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, X. et al. Integrin-mediated type II TGF-β receptor tyrosine dephosphorylation controls SMAD-dependent profibrotic signaling. J. Clin. Invest. 124, 3295–3310 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heppner, D. E. et al. The NADPH oxidases DUOX1 and NOX2 play distinct roles in redox regulation of epidermal growth factor receptor signaling. J. Biol. Chem. 291, 23282–23293 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiusa, M. et al. EGF receptor-mediated FUS phosphorylation promotes its nuclear translocation and fibrotic signaling. J. Cell Biol. 219, e202001120 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiusa, M. et al. Cytoplasmic retention of the DNA/RNA-binding protein FUS ameliorates organ fibrosis in mice. J. Clin. Invest. 134, e175158 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, M. et al. Enhancing integrin alpha1 inserted (I) domain affinity to ligand potentiates integrin α1β1-mediated down-regulation of collagen synthesis. J. Biol. Chem. 287, 35139–35152 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gardner, H., Broberg, A., Pozzi, A., Laato, M. & Heino, J. Absence of integrin α1β1 in the mouse causes loss of feedback regulation of collagen synthesis in normal and wounded dermis. J. Cell Sci. 112, 263–272 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Williams, A. S. et al. Integrin α1-null mice exhibit improved fatty liver when fed a high fat diet despite severe hepatic insulin resistance. J. Biol. Chem. 290, 6546–6557 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borza, C. M. et al. Inhibition of integrin α2β1 ameliorates glomerular injury. J. Am. Soc. Nephrol. 23, 1027–1038 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lakhe-Reddy, S., Li, V., Arnold, T. D., Khan, S. & Schelling, J. R. Mesangial cell αvβ8-integrin regulates glomerular capillary integrity and repair. Am. J. Physiol. Renal Physiol. 306, F1400–F1409 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khan, S. et al. Mesangial cell integrin αvβ8 provides glomerular endothelial cell cytoprotection by sequestering TGF-β and regulating PECAM-1. Am. J. Pathol. 178, 609–620 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hartner, A., Schocklmann, H., Prols, F., Muller, U. & Sterzel, R. B. α8 Integrin in glomerular mesangial cells and in experimental glomerulonephritis. Kidney Int. 56, 1468–1480 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hartner, A. et al. The α8 integrin chain affords mechanical stability to the glomerular capillary tuft in hypertensive glomerular disease. Am. J. Pathol. 160, 861–867 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bieritz, B. et al. Role of α8 integrin in mesangial cell adhesion, migration, and proliferation. Kidney Int. 64, 119–127 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zimmerman, S. E. et al. Nephronectin regulates mesangial cell adhesion and behavior in glomeruli. J. Am. Soc. Nephrol. 29, 1128–1140 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muller, U. et al. Integrin α8β1 is critically important for epithelial-mesenchymal interactions during kidney morphogenesis. Cell 88, 603–613 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Humbert, C. et al. Integrin α8 recessive mutations are responsible for bilateral renal agenesis in humans. Am. J. Hum. Genet. 94, 288–294 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elias, B. C. et al. The integrin β1 subunit regulates paracellular permeability of kidney proximal tubule cells. J. Biol. Chem. 289, 8532–8544 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, G. et al. α3 Integrin of cell-cell contact mediates kidney fibrosis by integrin-linked kinase in proximal tubular e-cadherin deficient mice. Am. J. Pathol. 186, 1847–1860 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sucre, J. M. et al. Alveolar repair following LPS-induced injury requires cell-ECM interactions. JCI Insight 8, e167211 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haake, S. M. et al. Ligand-independent integrin β1 signaling supports lung adenocarcinoma development. JCI Insight 7, e154098 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Plosa, E. J. et al. β1 Integrin regulates adult lung alveolar epithelial cell inflammation. JCI Insight 5, e129259 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramovs, V., Krotenberg Garcia, A., Kreft, M. & Sonnenberg, A. Integrin α3β1 is a key regulator of several protumorigenic pathways during skin carcinogenesis. J. Invest. Dermatol. 141, 732–741.e6 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mia, M. S. et al. Integrin β1 is a key determinant of the expression of angiotensin-converting enzyme 2 (ACE2) in the kidney epithelial cells. Eur. J. Cell Biol. 102, 151316 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hahm, K. et al. αvβ6 integrin regulates renal fibrosis and inflammation in Alport mouse. Am. J. Pathol. 170, 110–125 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, L. J. et al. Transforming growth factor-β-dependent and -independent pathways of induction of tubulointerstitial fibrosis in β6−/− mice. Am. J. Pathol. 163, 1261–1273 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, Y. et al. Pharmacologic blockade of alphavbeta1 integrin ameliorates renal failure and fibrosis in vivo. J. Am. Soc. Nephrol. 28, 1998–2005 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Munger, J. S. et al. The integrin αvβ6 binds and activates latent TGF β1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96, 319–328 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, W. et al. β1-Integrin is required for kidney collecting duct morphogenesis and maintenance of renal function. Am. J. Physiol. Renal Physiol. 297, F210–F217 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X. et al. β1 Integrin is necessary for ureteric bud branching morphogenesis and maintenance of collecting duct structural integrity. Development 136, 3357–3366 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, K., Boctor, S., Barisoni, L. M. & Gusella, G. L. Inactivation of integrin-β1 prevents the development of polycystic kidney disease after the loss of polycystin-1. J. Am. Soc. Nephrol. 26, 888–895 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morais, M. et al. Kidney organoids recapitulate human basement membrane assembly in health and disease. Elife 11, e73486 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kreidberg, J. A. et al. Alpha 3 beta 1 integrin has a crucial role in kidney and lung organogenesis. Development 122, 3537–3547 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yazlovitskaya, E. M. et al. Integrin α3β1 regulates kidney collecting duct development via TRAF6-dependent K63-linked polyubiquitination of Akt. Mol. Biol. Cell 26, 1857–1874 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Viquez, O. M. et al. Integrin α6 maintains the structural integrity of the kidney collecting system. Matrix Biol. 57-58, 244–257 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yazlovitskaya, E. M. et al. The laminin-binding integrins regulate nuclear factor κB-dependent epithelial cell polarity and inflammation. J. Cell Sci. 134, jcs259161 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yazlovitskaya, E. M. et al. The laminin binding α3 and α6 integrins cooperate to promote epithelial cell adhesion and growth. Matrix Biol. 77, 101–116 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, D. H. et al. Renal collecting system growth and function depend upon embryonic γ1 laminin expression. Development 138, 4535–4544 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Georges-Labouesse, E. et al. Absence of integrin α6 leads to epidermolysis bullosa and neonatal death in mice. Nat. Genet. 13, 370–373 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, Y., Esser, P., Heinemann, A., Bruckner-Tuderman, L. & Has, C. Kindlin-1 and -2 have overlapping functions in epithelial cells implications for phenotype modification. Am. J. Pathol. 178, 975–982 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gough, R. E. & Goult, B. T. The tale of two talins — two isoforms to fine-tune integrin signalling. FEBS Lett. 592, 2108–2125 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bandyopadhyay, A., Rothschild, G., Kim, S., Calderwood, D. A. & Raghavan, S. Functional differences between kindlin-1 and kindlin-2 in keratinocytes. J. Cell Sci. 125, 2172–2184 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ciobanasu, C., Faivre, B. & Le Clainche, C. Actomyosin-dependent formation of the mechanosensitive talin-vinculin complex reinforces actin anchoring. Nat. Commun. 5, 3095 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Mathew, S. et al. Talin regulates integrin β1-dependent and -independent cell functions in ureteric bud development. Development 144, 4148–4158 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monkley, S. J. et al. Disruption of the talin gene arrests mouse development at the gastrulation stage. Dev. Dyn. 219, 560–574 (2000).

    <a data-track="click_references" rel="nofollow noopener" data-track-label="10.1002/1097-0177(2000)9999:99993.0.CO;2-Y” data-track-item_id=”10.1002/1097-0177(2000)9999:99993.0.CO;2-Y” data-track-value=”article reference” data-track-action=”article reference” href=”https://doi.org/10.1002%2F1097-0177%282000%299999%3A9999%3C%3A%3AAID-DVDY1079%3E3.0.CO%3B2-Y” aria-label=”Article reference 89″ data-doi=”10.1002/1097-0177(2000)9999:99993.0.CO;2-Y”>Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Theodosiou, M. et al. Kindlin-2 cooperates with talin to activate integrins and induces cell spreading by directly binding paxillin. Elife 5, e10130 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rognoni, E., Ruppert, R. & Fassler, R. The kindlin family: functions, signaling properties and implications for human disease. J. Cell Sci. 129, 17–27 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bottcher, R. T. et al. Kindlin-2 recruits paxillin and Arp2/3 to promote membrane protrusions during initial cell spreading. J. Cell Biol. 216, 3785–3798 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bouaouina, M. & Calderwood, D. A. Kindlins. Curr. Biol. 21, R99–R101 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yates, L. A. et al. Structural and functional characterization of the kindlin-1 pleckstrin homology domain. J. Biol. Chem. 287, 43246–43261 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Montanez, E. et al. Kindlin-2 controls bidirectional signaling of integrins. Genes. Dev. 22, 1325–1330 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schell, C. & Huber, T. B. The evolving complexity of the podocyte cytoskeleton. J. Am. Soc. Nephrol. 28, 3166–3174 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian, X. et al. Podocyte-associated talin1 is critical for glomerular filtration barrier maintenance. J. Clin. Invest. 124, 1098–1113 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lausecker, F. et al. Vinculin is required to maintain glomerular barrier integrity. Kidney Int. 93, 643–655 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Atherton, P. et al. Relief of talin autoinhibition triggers a force-independent association with vinculin. J. Cell Biol. 219, e201903134 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Sun, Y. et al. Kindlin-2 association with Rho GDP-dissociation inhibitor α suppresses Rac1 activation and podocyte injury. J. Am. Soc. Nephrol. 28, 3545–3562 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qu, H. et al. Kindlin-2 regulates podocyte adhesion and fibronectin matrix deposition through interactions with phosphoinositides and integrins. J. Cell Sci. 124, 879–891 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mosaddeghzadeh, N. & Ahmadian, M. R. The RHO family GTPases: mechanisms of regulation and signaling. Cells 10, 1831 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bosco, E. E., Mulloy, J. C. & Zheng, Y. Rac1 GTPase: a “Rac” of all trades. Cell Mol. Life Sci. 66, 370–374 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei, X. et al. Kindlin-2 mediates activation of TGF-β/Smad signaling and renal fibrosis. J. Am. Soc. Nephrol. 24, 1387–1398 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, B., Gao, J., Zhan, J. & Zhang, H. Kindlin-2 interacts with and stabilizes EGFR and is required for EGF-induced breast cancer cell migration. Cancer Lett. 361, 271–281 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, Y. et al. Kindlin 2 regulates myogenic related factor myogenin via a canonical Wnt signaling in myogenic differentiation. PLoS ONE 8, e63490 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Godbout, E. et al. Kindlin-2 mediates mechanical activation of cardiac myofibroblasts. Cells 9, 2702 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, J. et al. Kindlin-2 Inhibits the hippo signaling pathway by promoting degradation of MOB1. Cell Rep. 29, 3664–3677.e5 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wickstrom, S. A., Lange, A., Montanez, E. & Fassler, R. The ILK/PINCH/parvin complex: the kinase is dead, long live the pseudokinase! EMBO J. 29, 281–291 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Sepulveda, J. L. & Wu, C. The parvins. Cell Mol. Life Sci. 63, 25–35 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang, X. et al. PINCH1 plays an essential role in early murine embryonic development but is dispensable in ventricular cardiomyocytes. Mol. Cell Biol. 25, 3056–3062 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Montanez, E., Wickstrom, S. A., Altstatter, J., Chu, H. & Fassler, R. α-parvin controls vascular mural cell recruitment to vessel wall by regulating RhoA/ROCK signalling. EMBO J. 28, 3132–3144 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lange, A. et al. Integrin-linked kinase is an adaptor with essential functions during mouse development. Nature 461, 1002–1006 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rogg, M. et al. α-Parvin defines a specific integrin adhesome to maintain the glomerular filtration barrier. J. Am. Soc. Nephrol. 33, 786–808 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • El-Aouni, C. et al. Podocyte-specific deletion of integrin-linked kinase results in severe glomerular basement membrane alterations and progressive glomerulosclerosis. J. Am. Soc. Nephrol. 17, 1334–1344 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schordan, S., Schordan, E., Endlich, K. & Endlich, N. αV-Integrins mediate the mechanoprotective action of osteopontin in podocytes. Am. J. Physiol. Renal Physiol. 300, F119–F132 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y., Yang, J., Dai, C., Wu, C. & Liu, Y. Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis. J. Clin. Invest. 112, 503–516 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y., Dai, C., Wu, C. & Liu, Y. PINCH-1 promotes tubular epithelial-to-mesenchymal transition by interacting with integrin-linked kinase. J. Am. Soc. Nephrol. 18, 2534–2543 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kriz, W., Kaissling, B. & Le Hir, M. Epithelial-mesenchymal transition (EMT) in kidney fibrosis: fact or fantasy? J. Clin. Invest. 121, 468–474 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y. et al. Inhibition of integrin-linked kinase attenuates renal interstitial fibrosis. J. Am. Soc. Nephrol. 20, 1907–1918 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuppe, C. et al. Decoding myofibroblast origins in human kidney fibrosis. Nature 589, 281–286 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sheng, L. & Zhuang, S. New insights into the role and mechanism of partial epithelial-mesenchymal transition in kidney fibrosis. Front. Physiol. 11, 569322 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smeeton, J. et al. Integrin-linked kinase regulates p38 MAPK-dependent cell cycle arrest in ureteric bud development. Development 137, 3233–3243 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bulus, N. et al. Disruption of the integrin-linked kinase (ILK) pseudokinase domain affects kidney development in mice. J. Biol. Chem. 296, 100361 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eke, I., Leonhardt, F., Storch, K., Hehlgans, S. & Cordes, N. The small molecule inhibitor QLT0267 radiosensitizes squamous cell carcinoma cells of the head and neck. PLoS ONE 4, e6434 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, M. et al. Integrin-linked kinase deficiency in collecting duct principal cell promotes necroptosis of principal cell and contributes to kidney inflammation and fibrosis. J. Am. Soc. Nephrol. 30, 2073–2090 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fujiu, K., Manabe, I. & Nagai, R. Renal collecting duct epithelial cells regulate inflammation in tubulointerstitial damage in mice. J. Clin. Invest. 121, 3425–3441 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DeMali, K. A., Wennerberg, K. & Burridge, K. Integrin signaling to the actin cytoskeleton. Curr. Opin. Cell Biol. 15, 572–582 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Delon, I. & Brown, N. H. Integrins and the actin cytoskeleton. Curr. Opin. Cell Biol. 19, 43–50 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Svitkina, T. The actin cytoskeleton and actin-based motility. Cold Spring Harb. Perspect. Biol. 10, a018267 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mukherjee, K. et al. Simultaneous stabilization of actin cytoskeleton in multiple nephron-specific cells protects the kidney from diverse injury. Nat. Commun. 13, 2422 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Molitoris, B. A. Actin cytoskeleton in ischemic acute renal failure. Kidney Int. 66, 871–883 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Lawson, C. D. & Burridge, K. The on-off relationship of Rho and Rac during integrin-mediated adhesion and cell migration. Small GTPases 5, e27958 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spiering, D. & Hodgson, L. Dynamics of the Rho-family small GTPases in actin regulation and motility. Cell Adh Migr. 5, 170–180 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suleiman, H. Y. et al. Injury-induced actin cytoskeleton reorganization in podocytes revealed by super-resolution microscopy. JCI Insight 2, e94137 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qu, C. et al. Three-dimensional visualization of the podocyte actin network using integrated membrane extraction, electron microscopy, and machine learning. J. Am. Soc. Nephrol. 33, 155–173 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haydak, J. & Azeloglu, E. U. Role of biophysics and mechanobiology in podocyte physiology. Nat. Rev. Nephrol. 20, 371–385 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Zhu, L., Jiang, R., Aoudjit, L., Jones, N. & Takano, T. Activation of RhoA in podocytes induces focal segmental glomerulosclerosis. J. Am. Soc. Nephrol. 22, 1621–1630 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, H. et al. Rac1 activation in podocytes induces rapid foot process effacement and proteinuria. Mol. Cell Biol. 33, 4755–4764 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robins, R. et al. Rac1 activation in podocytes induces the spectrum of nephrotic syndrome. Kidney Int. 92, 349–364 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zamboni, V. et al. Hyperactivity of Rac1-GTPase pathway impairs neuritogenesis of cortical neurons by altering actin dynamics. Sci. Rep. 8, 7254 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scott, R. P. et al. Podocyte-specific loss of Cdc42 leads to congenital nephropathy. J. Am. Soc. Nephrol. 23, 1149–1154 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Etienne-Manneville, S. Cdc42 — the centre of polarity. J. Cell Sci. 117, 1291–1300 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blattner, S. M. et al. Divergent functions of the Rho GTPases Rac1 and Cdc42 in podocyte injury. Kidney Int. 84, 920–930 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rogg, M. et al. SRGAP1 controls small rho GTPases to regulate podocyte foot process maintenance. J. Am. Soc. Nephrol. 32, 563–579 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bieling, P. & Rottner, K. From WRC to Arp2/3: collective molecular mechanisms of branched actin network assembly. Curr. Opin. Cell Biol. 80, 102156 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schell, C. et al. ARP3 controls the podocyte architecture at the kidney filtration barrier. Dev. Cell 47, 741–757.e8 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schell, C. et al. N-wasp is required for stabilization of podocyte foot processes. J. Am. Soc. Nephrol. 24, 713–721 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pernier, J., Shekhar, S., Jegou, A., Guichard, B. & Carlier, M. F. Profilin interaction with actin filament barbed end controls dynamic instability, capping, branching, and motility. Dev. Cell 36, 201–214 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian, X. et al. Profilin1 is required for prevention of mitotic catastrophe in murine and human glomerular diseases. J. Clin. Invest. 133, e171237 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bock, F. et al. Rac1 promotes kidney collecting duct repair by mechanically coupling cell morphology to mitotic entry. Sci. Adv. 10, eadi7840 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wioland, H. et al. ADF/cofilin accelerates actin dynamics by severing filaments and promoting their depolymerization at both ends. Curr. Biol. 27, 1956–1967.e7 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garg, P. et al. Actin-depolymerizing factor cofilin-1 is necessary in maintaining mature podocyte architecture. J. Biol. Chem. 285, 22676–22688 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuure, S. et al. Actin depolymerizing factors cofilin1 and destrin are required for ureteric bud branching morphogenesis. PLoS Genet. 6, e1001176 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elias, B. C. et al. Cdc42 regulates epithelial cell polarity and cytoskeletal function during kidney tubule development. J. Cell Sci. 128, 4293–4305 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bock, F. et al. Rac1 promotes kidney collecting duct integrity by limiting actomyosin activity. J. Cell Biol. 220, e202103080 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sorce, B. et al. Mitotic cells contract actomyosin cortex and generate pressure to round against or escape epithelial confinement. Nat. Commun. 6, 8872 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramkumar, N. & Baum, B. Coupling changes in cell shape to chromosome segregation. Nat. Rev. Mol. Cell Biol. 17, 511–521 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pham, T. D. et al. Angiotensin II acts through Rac1 to upregulate pendrin: role of NADPH oxidase. Am. J. Physiol. Renal Physiol. 326, F202–F218 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ayuzawa, N. et al. Rac1 deficiency impairs postnatal development of the renal papilla. Sci. Rep. 12, 20310 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pang, X. et al. Targeting integrin pathways: mechanisms and advances in therapy. Signal. Transduct. Target. Ther. 8, 1 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, A. R. et al. Integrin, exosome and kidney disease. Front. Physiol. 11, 627800 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Tang, T. T. et al. Employing macrophage-derived microvesicle for kidney-targeted delivery of dexamethasone: an efficient therapeutic strategy against renal inflammation and fibrosis. Theranostics 9, 4740–4755 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar, S. Cellular and molecular pathways of renal repair after acute kidney injury. Kidney Int. 93, 27–40 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bonventre, J. V. & Yang, L. Cellular pathophysiology of ischemic acute kidney injury. J. Clin. Invest. 121, 4210–4221 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Little, M. H. & Kairath, P. Does renal repair recapitulate kidney development? J. Am. Soc. Nephrol. 28, 34–46 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Okamura, D. M. et al. Spiny mice activate unique transcriptional programs after severe kidney injury regenerating organ function without fibrosis. iScience 24, 103269 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Korhonen, M., Ylanne, J., Laitinen, L. & Virtanen, I. The α1-α6 subunits of integrins are characteristically expressed in distinct segments of developing and adult human nephron. J. Cell Biol. 111, 1245–1254 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Voigt, S. et al. Distribution and quantification of α1-integrin subunit in rat organs. Histochem. J. 27, 123–132 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patey, N., Halbwachs-Mecarelli, L., Droz, D., Lesavre, P. & Noel, L. H. Distribution of integrin subunits in normal human kidney. Cell Adhes. Commun. 2, 159–167 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuhara, T., Kagami, S. & Kuroda, Y. Expression of β1-integrins on activated mesangial cells in human glomerulonephritis. J. Am. Soc. Nephrol. 8, 1679–1687 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rahilly, M. A. & Fleming, S. Differential expression of integrin α chains by renal epithelial cells. J. Pathol. 167, 327–334 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar