Ronco, C. & Clark, W. R. Haemodialysis membranes. Nat. Rev. Nephrol. 14, 394–410 (2018).
Ramada, D. L. et al. Portable, wearable and implantable artificial kidney systems: needs, opportunities and challenges. Nat. Rev. Nephrol. 19, 481–490 (2023).
Cancilla, N. et al. A porous media CFD model for the simulation of hemodialysis in hollow fiber membrane modules. J. Membr. Sci. 646, 120219 (2022).
Abaci, H. E. & Altinkaya, S. A. Modeling of hemodialysis operation. Ann. Biomed. Eng. 38, 3347–3362 (2010).
Mohajerani, F., Clark, W. R., Ronco, C. & Narsimhan, V. Mass transport in high-flux hemodialysis: application of engineering principles to clinical prescription. Clin. J. Am. Soc. Nephrol. 17, 749–756 (2022).
King, J. et al. Modeling indoxyl sulfate transport in a bioartificial kidney: two-step binding kinetics or lumped parameters model for uremic toxin clearance? Comput. Biol. Med. 138, 104912 (2021).
Refoyo, R., Skouras, E. D., Chevtchik, N. V., Stamatialis, D. & Burganos, V. N. Transport and reaction phenomena in multilayer membranes functioning as bioartificial kidney devices. J. Membr. Sci. 565, 61–71 (2018).
Karniadakis, G. E. et al. Physics-informed machine learning. Nat. Rev. Phys. 3, 422–440 (2021).
Alber, M. et al. Integrating machine learning and multiscale modeling—perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences. NPJ Digit. Med. 2, 115 (2019).
Himmelfarb, J., Vanholder, R., Mehrotra, R. & Tonelli, M. The current and future landscape of dialysis. Nat. Rev. Nephrol. 16, 573–585 (2020).
- The Renal Warrior Project. Join Now
- Source: https://www.nature.com/articles/s41581-024-00826-0