
Farag, M. R. et al. Neurobehavioral, physiological and inflammatory impairments in response to bifenthrin intoxication in Oreochromis niloticus fish: Role of dietary supplementation with Petroselinum crispum essential oil. Aquat. Toxicol. 231, 105715 (2021).
Yang, Y., Wu, N. & Wang, C. Toxicity of the pyrethroid bifenthrin insecticide. Environ. Chem. Lett. 16, 1377–1391 (2018).
Abdel-Wahhab, K. G. et al. Echinacea purpurea extract intervention for counteracting neurochemical and behavioral changes induced by bifenthrin. Metab. Brain Dis. 39(1), 101–113 (2024).
Gargouri, B., Bhatia, H. S., Bouchard, M., Fiebich, B. L. & Fetoui, H. Inflammatory and oxidative mechanisms potentiate bifenthrin-induced neurological alterations and anxiety-like behavior in adult rats. Toxicol. Lett. 294, 73–86 (2018).
Syed, F. et al. Bifenthrin-induced neurotoxicity in rats: Involvement of oxidative stress. Toxicol. Res. 7(1), 48–58 (2018).
Manzoor, F. & Pervez, M. HPLC analysis to determine the half-life and bioavailability of the termiticides bifenthrin and fipronil in soil. J. Econ. Entomol. 110, 2527–2533 (2017).
Xiang, D. et al. Chronic exposure to environmental levels of cis-bifenthrin: Enantio-selectivity and reproductive effects on zebra fish (Danio rerio). Environ. Pollut. 251, 175–184 (2019).
Pylak-Piwko, O. & Nieradko-Iwanicka, B. Subacute poisoning with bifenthrin increases the level of interleukin 1ß in mice kidneys and livers. BMC Pharmacol. Toxicol. 22, 21 (2021).
Aouey, B. et al. Pyrethroid insecticide lambda-cyhalothrin and its metabolites induce liver injury through the activation of oxidative stress and proinflammatory gene expression in rats following acute and subchronic exposure. Environ. Sci. Pollut. Res. Int. 24, 5841–5856 (2017).
El-Ashmawy, N. E., El-Zamarany, E. A., Salem, M. L., El-Bahrawy, H. A. & Al-Ashmawy, G. M. In vitro and In vivo studies of the immunomodulatory effect of Echinacea purpurea on dendritic cells. J. Genet. Eng. Biotechnol. 13(2), 185–192 (2015).
Ahmadi, F., Samadi, A., Sepehr, E., Rahimi, A. & Shabala, S. Potassium homeostasis and signaling as a determinant of Echinacea species tolerance to salinity stress. Environ. Exp. Bot. 206, 105148 (2023).
Temerdashev, Z., Vinitskaya, E., Meshcheryakova, E. & Shpigun, O. Chromatographic analysis of water and water-alcohol extracts of Echinacea purpurea L. obtained by various methods. Microchem. J. 179, 107507 (2022).
Ahmadi, F., Samadi, A., Sepehr, E., Rahimi, A. & Shabala, S. Increasing medicinal and phytochemical compounds of coneflower (Echinacea purpurea L.) as affected by NO3−/NH4+ ratio and perlite particle size in hydroponics. Sci. Rep. 11, 15202 (2021).
Cristina, C. et al. Echinacea purpurea (L.) moench: Biological and pharmacological properties. A review. Plants 11, 1244 (2022).
EL-Sahra, D. G., Elqattan, G. M., Hassan, L. K. & Abdel-Wahhab, K. G. Modulatory efficiency of Echinacea purpurea extract on hyperthyroidism modeled rats. Egypt. Acad. J. Biol. Sci. D Histol. Histochem. 14(2), 165–179 (2022).
Kakouri, E., Talebi, M. & Tarantilis, P. A. Echinacea spp.: The cold-fighter herbal remedy. Pharmacol. Res. Modern Chin. Med. 10, 100397 (2024).
Ikram, S. et al. Nephroprotective role of Nigella sativa oil in bifenthrin-intoxicated mice. Fluoride 54(2), 169–177 (2021).
Todd, D. A. et al. Ethanolic Echinacea purpurea extracts contain a mixture of cytokine-suppressive and cytokine-inducing compounds, including some that originate from endophytic bacteria. PLoS ONE 10(5), 0124276 (2015).
Mao, C. F., Sudirman, S., Lee, C. C., Tsou, D. & Kong, Z. L. Echinacea purpurea ethanol extract improves male reproductive dysfunction with streptozotocin-nicotinamide-induced diabetic rats. Front Vet. Sci. 28(8), 651286 (2021).
Perandones, C. E., Illera, V. A., Peckham, D., Stunz, L. L. & Ashman, R. F. Regulation of apoptosis in vitro in mature murine spleen T cells. J. Immunol. 151(7), 3521–3529 (1993).
Hassan, N. H., Yousef, D. M. & Alsemeh, A. E. Hesperidin protects against aluminum-induced renal injury in rats via modulating MMP-9 and apoptosis: Biochemical, histological, and ultrastructural study. Environ. Sci. Pollut. Res. 30, 36208–36227 (2023).
Chang, C. L. et al. Adipose-derived mesenchymal stem cell-derived exosomes alleviate overwhelming systemic inflammatory reaction and organ damage and improve outcome in rat sepsis syndrome. AJTR. 10(4), 1053–1070 (2018).
Ahmad, K. R., Kanwal, M. A., Raees, K. & Abbas, T. Strawberry fruit extract ameliorates pregnancy and feto-gestational effects of sodium fluoride exposure in mice. Fluoride 48, 62–68 (2015).
Dar, M. A., Khan, A. M., Raina, R., Verma, P. K. & Wani, N. M. Effect of bifenthrin on oxidative stress parameters in the liver, kidneys, and lungs of rats. Environ. Sci. Pollut. Res. 26, 9365–9370 (2019).
Feriani, A. et al. Bifenthrin exerts proatherogenic effects via arterial accumulation of native and oxidized LDL in rats: The beneficial role of vitamin E and selenium. Environ. Sci. Pollut. Res. Int. 27(6), 5651–5660 (2020).
Khan, A. M., Raina, R., Dubey, N. & Verma, P. K. Effect of deltamethrin and fluoride co-exposure on the brain antioxidant status and cholinesterase activity in Wistar rats. Drug Chem. Toxicol. 41(2), 123–127 (2017).
Talla, V. & Veerareddy, P. R. Oxidative stress induced by fluoroquinolones on treatment for complicated urinary tract infections in Indian patients. J. Young Pharm. 3, 304–309 (2011).
Rapa, S. F., Di Iorio, B. R., Campiglia, P., Heidland, A. & Marzocco, S. Inflammation and oxidative stress in chronic kidney disease-potential therapeutic role of minerals, vitamins and plant-derived metabolites. Int. J. Mol. Sci. 21(1), 263–289 (2020).
Piłat, D. & Mika, J. The role of interleukin-1 family of cytokines in nociceptive transmission. Bol. 15(4), 39–47 (2014).
Banerjee, M. & Saxena, M. Interleukin-1 (IL-1) family of cytokines: Role in type 2 diabetes. Clin. Chim. Acta 16, 1163–1170 (2012).
Jin, Y., Pan, X., Cao, L., Ma, B. & Fu, Z. Embryonic exposure to cis-bifenthrin enantio selectively induces the transcription of genes related to oxidative stress, apoptosis and immunotoxicity in zebrafish (Danio rerio). Fish Shellfish Immunol. 34, 717–723 (2013).
Wang, X., Gao, X., He, B., Jin, Y. & Fu, Z. Cis-bifenthrin causes immunotoxicity in murine macrophages. Chemosphere. 168, 1375–1382 (2017).
Wang, X. et al. Cis-bifenthrin induces immunotoxicity in adolescent male C57BL/6 mice. Environ. Toxicol. 32(7), 1849–1856 (2017).
Farag, M. R. et al. Effect of parsley essential oil on digestive enzymes, intestinal morphometry, blood chemistry and stress-related genes in liver of Nile tilapia fish exposed to Bifenthrin. Aquaculture 546, 737322 (2022).
Osman, K. A., Ali, A., Ahmed, M. S. & El-Seedy, A. S. Biochemical and genotoxic effects of some pesticides on the Egyptian Toads, Sclerophrys regularis (Reuss, 1833). Watershed Ecol. Environ. 4, 125–134 (2022).
Al-Sowayan, N. S. & Mousa, H. M. Ameliorative effect of olive leaf extract on carbon tetrachloride-induced nephrotoxicity in rats. Life Sci. J. 11(5), 238–242 (2014).
Zhou, X. et al. Chlorogenic acid supplementation ameliorates hyperuricemia, relieves renal inflammation, and modulates intestinal homeostasis. Food Funct. 12(12), 5637–5649 (2021).
Khan, T. H. et al. Naringenin prevents doxorubicin-induced toxicity in kidney tissues by regulating the oxidative and inflammatory insult in Wister rats. Arch. Physiol. Biochem. 126(4), 300–307 (2020).
Gholamine, B. et al. Gallic acid ameliorates sodium arsenite-induced renal and hepatic toxicity in rats. Drug Chem. Toxicol. 44(4), 341–352 (2021).
Mani, A., Kushwaha, K., Khurana, N. & Gupta, J. p-Coumaric acid attenuates high-fat diet-induced oxidative stress and nephropathy in diabetic rats. J. Anim. Physiol. Anim. Nutr. (Berl) 10(4), 872–880 (2022).
Hakyemez, I. N. et al. Protective effects of p-coumaric acid against gentamicin-induced nephrotoxicity in rats. Drug Chem. Toxicol. 45(6), 2825–2832 (2022).
Gu, Y.-Y. et al. Quercetin as a potential treatment for COVID-19-induced acute kidney injury: Based on network pharmacology and molecular docking study. PLoS ONE 16(1), e0245209 (2021).
Kandemir, F. M., Ileriturk, M. & Gur, C. Rutin protects rat liver and kidney from sodium valproate-induce damage by attenuating oxidative stress, ER stress, inflammation, apoptosis and autophagy. Mol. Biol. Rep. 49(7), 6063–6074 (2022).
Wu, Q. et al. Apigenin ameliorates doxorubicin-induced renal injury via inhibition of oxidative stress and inflammation. Biomed. Pharmacother. 137, 111308 (2021).
Karhib, M. M., El-Sayed, R. A., Ghanem, N. F. & El-Demerdash, F. M. Nephroprotective role of Echinacea purpurea against potassium dichromate-induced oxidative stress, inflammation, and apoptosis in rats. Environ. Toxicol. 37(9), 2324–2334 (2022).
Hong, Y. H., Huang, Y. L., Liu, Y. C. & Tsai, P. J. Djulis (Chenopodium formosanum Koidz.) water extract and its bioactive components ameliorate dermal damage in UVB-irradiated skin models. Biomed. Res. Int. 2016, 7368797 (2016).
Yu, D. et al. Anti-inflammatory effects of essential oil in Echinacea purpurea L. Pak. J. Pharm. Sci. 26(2), 403–408 (2013).
Fırat, O. et al. A Comparative study on the effects of a pesticide (cypermethrin) and two metals (copper, lead) to serum biochemistry of Nile tilapia, Oreochromis niloticus. Fish Physiol. Biochem. 37, 657–666 (2011).
Kumar, A., Sharma, B. & Pandey, R. S. Cypermethrin induced alterations in nitrogen metabolism in freshwater fishes. Chemosphere 83, 492–501 (2011).
Tahoun, E. A., Abou-Zeid, S. M. & AbuBakr, H. O. Bifenthrin induced biochemical and histological alterations in rat. Int. J. Adv. Res. 7(5), 70–85 (2019).
Wang, Y. et al. Effects of caffeic acid on learning deficits in a model of Alzheimer’s disease. Int. J. Mol. Med. 38(3), 869–875 (2016).
Hou, C. C. et al. Comparative metabolomics approach coupled with cell- andgene-based assays for species classification and anti-inflammatory bioactivity validation of Echinacea plants. J. Nutr. Biochem. 21, 1045–1059 (2010).
Woelkart, K. & Bauer, R. The role of alkamides as an active principle of Echinacea. Planta Med. 73, 615–623 (2007).
Bruni, R. et al. Analytical methods for the study of bioactive compounds from medicinally used Echinacea species. J. Pharm. Biomed. Anal. 160, 443–477 (2018).
Sudeep, H. V. et al. A standardized extract of Echinacea purpurea containing higher chicoric acid content enhances immune function in murine macrophages and cyclophosphamide-induced immunosuppression mice. Pharm. Biol. 61(1), 1211–1221 (2023).
Wang, Y. et al. Chicoric acid supplementation ameliorates cognitive impairment induced by oxidative stress via promotion of antioxidant defense system. RSC Adv. 7, 36149–36162 (2017).
Mohamed, S. M. et al. Evaluation of anti-Alzheimer activity of Echinacea purpurea extracts in aluminum chloride-induced neurotoxicity in rat model. J. Chem. Neuroanat. 128, 102234 (2023).
- The Renal Warrior Project. Join Now
- Source: https://www.nature.com/articles/s41598-024-56494-4