Search
Search
Close this search box.

Immune mechanisms in the pathophysiology of hypertension – Nature Reviews Nephrology

  • GBD 2015 Risk Factors Collaborators Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1659–1724 (2016).

    Article 

    Google Scholar
     

  • Whelton, P. K. et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 138, e426–e483 (2018).

    PubMed 

    Google Scholar
     

  • Muntner, P. et al. Trends in blood pressure control among US adults with hypertension, 1999–2000 to 2017–2018. JAMA 324, 1190–1200 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Newton, K. & Dixit, V. M. Signaling in innate immunity and inflammation. Cold Spring Harb. Perspect. Biol. 4, a006049 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guzik, T. J. et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J. Exp. Med. 204, 2449–2460 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marko, L. et al. Interferon-γ signaling inhibition ameliorates angiotensin II-induced cardiac damage. Hypertension 60, 1430–1436 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei, S. Y. et al. Multiple mechanisms are involved in salt-sensitive hypertension-induced renal injury and interstitial fibrosis. Sci. Rep. 7, 45952 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao, L. et al. Renal denervation prevents immune cell activation and renal inflammation in angiotensin II-induced hypertension. Circ. Res. 117, 547–557 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Madhur, M. S. et al. Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension 55, 500–507 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wenzel, P. Monocytes as immune targets in arterial hypertension. Br. J. Pharmacol. 176, 1966–1977 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parissis, J. T., Korovesis, S., Giazitzoglou, E., Kalivas, P. & Katritsis, D. Plasma profiles of peripheral monocyte-related inflammatory markers in patients with arterial hypertension. Correlations with plasma endothelin-1. Int. J. Cardiol. 83, 13–21 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Alexander, M. R. et al. Human monocyte transcriptional profiling identifies IL-18 receptor accessory protein and lactoferrin as novel immune targets in hypertension. Br. J. Pharmacol. 176, 2015–2027 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kirabo, A. et al. DC isoketal-modified proteins activate T cells and promote hypertension. J. Clin. Invest. 124, 4642–4656 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loperena, R. et al. Hypertension and increased endothelial mechanical stretch promote monocyte differentiation and activation: roles of STAT3, interleukin 6 and hydrogen peroxide. Cardiovasc. Res. 114, 1547–1563 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wenzel, P. et al. Lysozyme M-positive monocytes mediate angiotensin II-induced arterial hypertension and vascular dysfunction. Circulation 124, 1370–1381 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kossmann, S. et al. Inflammatory monocytes determine endothelial nitric-oxide synthase uncoupling and nitro-oxidative stress induced by angiotensin II. J. Biol. Chem. 289, 27540–27550 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gkaliagkousi, E. et al. Decreased platelet nitric oxide contributes to increased circulating monocyte-platelet aggregates in hypertension. Eur. Heart J. 30, 3048–3054 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zaldivia, M. T. et al. Renal denervation reduces monocyte activation and monocyte-platelet aggregate formation: an anti-inflammatory effect relevant for cardiovascular risk. Hypertension 69, 323–331 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, P. et al. Platelet P-selectin initiates cross-presentation and dendritic cell differentiation in blood monocytes. Sci. Adv. 6, eaaz1580 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gebhard, S. et al. Angiotensin II-dependent hypertension causes reversible changes in the platelet proteome. J. Hypertens. 29, 2126–2137 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hilt, Z. T. et al. Platelet-derived β2M regulates monocyte inflammatory responses. JCI Insight 4, e122943 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hughson, M. D. et al. Associations of glomerular number and birth weight with clinicopathological features of African Americans and whites. Am. J. Kidney Dis. 52, 18–28 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • De Ciuceis, C. et al. Reduced vascular remodeling, endothelial dysfunction, and oxidative stress in resistance arteries of angiotensin II-infused macrophage colony-stimulating factor-deficient mice: evidence for a role in inflammation in angiotensin-induced vascular injury. Arterioscler. Thromb. Vasc. Biol. 25, 2106–2113 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Oh, J. et al. Macrophage secretion of miR-106b-5p causes renin-dependent hypertension. Nat. Commun. 11, 4798 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ip, W. K. & Medzhitov, R. Macrophages monitor tissue osmolarity and induce inflammatory response through NLRP3 and NLRC4 inflammasome activation. Nat. Commun. 6, 6931 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Machnik, A. et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat. Med. 15, 545–552 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thowsen, I. M. et al. Genetic engineering of lymphangiogenesis in skin does not affect blood pressure in mouse models of salt-sensitive hypertension. Hypertension 79, 2451–2462 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shah, K. H. et al. Myeloid suppressor cells accumulate and regulate blood pressure in hypertension. Circ. Res. 117, 858–869 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vinh, A. et al. Inhibition and genetic ablation of the B7/CD28 T-cell costimulation axis prevents experimental hypertension. Circulation 122, 2529–2537 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barbaro, N. R. et al. Dendritic cell amiloride-sensitive channels mediate sodium-induced inflammation and hypertension. Cell Rep. 21, 1009–1020 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Beusecum, J. P. et al. High salt activates CD11c+ antigen-presenting cells via SGK (Serum Glucocorticoid Kinase) 1 to promote renal inflammation and salt-sensitive hypertension. Hypertension 74, 555–563 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Van Beusecum, J. P. et al. Growth arrest specific-6 and Axl coordinate inflammation and hypertension. Circ. Res. 129, 975–991 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thiam, H. R., Wong, S. L., Wagner, D. D. & Waterman, C. M. Cellular mechanisms of NETosis. Annu. Rev. Cell Dev. Biol. 36, 191–218 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tatsukawa, Y. et al. White blood cell count, especially neutrophil count, as a predictor of hypertension in a Japanese population. Hypertens. Res. 31, 1391–1397 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Siedlinski, M. et al. White blood cells and blood pressure: a Mendelian randomization study. Circulation 141, 1307–1317 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramasamy, R., Maqbool, M., Mohamed, A. L. & Noah, R. M. Elevated neutrophil respiratory burst activity in essential hypertensive patients. Cell Immunol. 263, 230–234 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Folco, E. J. et al. Neutrophil extracellular traps induce endothelial cell activation and tissue factor production through interleukin-1ɑ and cathepsin G. Arterioscler. Thromb. Vasc. Biol. 38, 1901–1912 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kahlenberg, J. M., Carmona-Rivera, C., Smith, C. K. & Kaplan, M. J. Neutrophil extracellular trap-associated protein activation of the NLRP3 inflammasome is enhanced in lupus macrophages. J. Immunol. 190, 1217–1226 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chrysanthopoulou, A. et al. Angiotensin II triggers release of neutrophil extracellular traps, linking thromboinflammation with essential hypertension. JCI Insight 6, e148668 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krishnan, J. et al. IsoLGs (Isolevuglandins) drive neutrophil migration in hypertension and are essential for the formation of neutrophil extracellular traps. Hypertension 79, 1644–1655 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ge, W. et al. The role of immunoglobulin E and mast cells in hypertension. Cardiovasc. Res. 118, 2985–2999 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abais-Battad, J. M., Lund, H., Fehrenbach, D. J., Dasinger, J. H. & Mattson, D. L. Rag1-null Dahl SS rats reveal that adaptive immune mechanisms exacerbate high protein-induced hypertension and renal injury. Am. J. Physiol. Regul. Integr. Comp. Physiol. 315, R28–r35 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rudemiller, N., Lund, H., Jacob, H. J., Geurts, A. M. & Mattson, D. L. CD247 modulates blood pressure by altering T-lymphocyte infiltration in the kidney. Hypertension 63, 559–564 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crowley, S. D. et al. Lymphocyte responses exacerbate angiotensin II-dependent hypertension. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R1089–R1097 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trott, D. W. et al. Oligoclonal CD8+ T cells play a critical role in the development of hypertension. Hypertension 64, 1108–1115 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, X. N. et al. T-cell mineralocorticoid receptor controls blood pressure by regulating interferon-γ. Circ. Res. 120, 1584–1597 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Strioga, M., Pasukoniene, V. & Characiejus, D. CD8+ CD28− and CD8+ CD57+ T cells and their role in health and disease. Immunology 134, 17–32 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guan, Y. et al. CD28null T cells in aging and diseases: from biology to assessment and intervention. Int. Immunopharmacol. 131, 111807 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dale, B. L. et al. Critical role of Interleukin 21 and T follicular helper cells in hypertension and vascular dysfunction. JCI Insight 5, e129278 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Itani, H. A. et al. Activation of human T cells in hypertension: studies of humanized mice and hypertensive humans. Hypertension 68, 123–132 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Higaki, A., Mahmoud, A. U. M., Paradis, P. & Schiffrin, E. L. Role of interleukin-23/interleukin-17 axis in T-cell-mediated actions in hypertension. Cardiovasc. Res. 117, 1274–1283 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kamat, N. V. et al. Renal transporter activation during angiotensin-II hypertension is blunted in interferon-γ−/− and interleukin-17A−/− mice. Hypertension 65, 569–576 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. CD8+ T cells stimulate Na-Cl co-transporter NCC in distal convoluted tubules leading to salt-sensitive hypertension. Nat. Commun. 8, 14037 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao, W., Sun, Y., Wang, X. & Niu, K. Elevated serum level of interleukin 17 in a population with prehypertension. J. Clin. Hypertens. 17, 770–774 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Nguyen, H. et al. Interleukin-17 causes Rho-kinase-mediated endothelial dysfunction and hypertension. Cardiovasc. Res. 97, 696–704 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, J. et al. Inflammation and mechanical stretch promote aortic stiffening in hypertension through activation of p38 mitogen-activated protein kinase. Circ. Res. 114, 616–625 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Orejudo, M. et al. Interleukin-17A induces vascular remodeling of small arteries and blood pressure elevation. Clin. Sci. 134, 513–527 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Orejudo, M. et al. Interleukin 17A participates in renal inflammation associated to experimental and human hypertension. Front. Pharmacol. 10, 1015 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Norlander, A. E. et al. Interleukin-17A regulates renal sodium transporters and renal injury in angiotensin II-induced hypertension. Hypertension 68, 167–174 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boehm, U., Klamp, T., Groot, M. & Howard, J. C. Cellular responses to interferon-γ. Annu. Rev. Immunol. 15, 749–795 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garcia, A. G. et al. Interferon-γ ablation exacerbates myocardial hypertrophy in diastolic heart failure. Am. J. Physiol. Heart Circ. Physiol. 303, H587–H596 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kimura, A. et al. Protective roles of interferon-γ in cardiac hypertrophy induced by sustained pressure overload. J. Am. Heart Assoc. 7, e008145 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benson, L. N. et al. The IFNγ-PDL1 pathway enhances CD8T-DCT interaction to promote hypertension. Circ. Res. 130, 1550–1564 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saleh, M. A. et al. Lymphocyte adaptor protein LNK deficiency exacerbates hypertension and end-organ inflammation. J. Clin. Invest. 125, 1189–1202 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J. et al. Tumor necrosis factor-ɑ produced in the kidney contributes to angiotensin II-dependent hypertension. Hypertension 64, 1275–1281 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hsieh, C. S., Macatonia, S. E., O’Garra, A. & Murphy, K. M. T cell genetic background determines default T helper phenotype development in vitro. J. Exp. Med. 181, 713–721 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X. et al. Relationship of serum immunoglobulin levels to blood pressure and hypertension in an adult population. J. Hum. Hypertens. 32, 212–218 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y. et al. Class switching and high-affinity immunoglobulin G production by B cells is dispensable for the development of hypertension in mice. Cardiovasc. Res. 117, 1217–1228 (2021). PMC7983008.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chan, C. T. et al. Obligatory role for B cells in the development of angiotensin II-dependent hypertension. Hypertension 66, 1023–1033 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lei, L., Zhong, X. N., He, Z. Y., Zhao, C. & Sun, X. J. IL-21 induction of CD4+ T cell differentiation into Th17 cells contributes to bleomycin-induced fibrosis in mice. Cell Biol. Int. 39, 388–399 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nurieva, R. et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448, 480–483 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rudensky, A. Y. Regulatory T cells and Foxp3. Immunol. Rev. 241, 260–268 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valencia, X. & Lipsky, P. E. CD4+CD25+FoxP3+ regulatory T cells in autoimmune diseases. Nat. Clin. Pract. Rheumatol. 3, 619–626 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kvakan, H. et al. Regulatory T cells ameliorate angiotensin II-induced cardiac damage. Circulation 119, 2904–2912 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barhoumi, T. et al. T regulatory lymphocytes prevent angiotensin II-induced hypertension and vascular injury. Hypertension 57, 469–476 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tipton, A. J., Baban, B. & Sullivan, J. C. Female spontaneously hypertensive rats have greater renal anti-inflammatory T lymphocyte infiltration than males. Am. J. Physiol. Regul. Integr. Comp. Physiol. 303, R359–R367 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gillis, E. E., Musall, J. B., Baban, B. & Sullivan, J. C. IL-10 treatment decreases blood pressure in male, but not female, spontaneously hypertensive rats. Am. J. Physiol. Renal Physiol. 319, F359–F365 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mian, M. O., Barhoumi, T., Briet, M., Paradis, P. & Schiffrin, E. L. Deficiency of T-regulatory cells exaggerates angiotensin II-induced microvascular injury by enhancing immune responses. J. Hypertens. 34, 97–108 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Emmerson, A. et al. Nox2 in regulatory T cells promotes angiotensin II-induced cardiovascular remodeling. J. Clin. Invest. 128, 3088–3101 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kasal, D. A. et al. T regulatory lymphocytes prevent aldosterone-induced vascular injury. Hypertension 59, 324–330 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matrougui, K. et al. Natural regulatory T cells control coronary arteriolar endothelial dysfunction in hypertensive mice. Am. J. Pathol. 178, 434–441 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gackowska, L. et al. Regulatory T-cell subset distribution in children with primary hypertension is associated with hypertension severity and hypertensive target organ damage. J. Hypertens. 38, 692–700 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sawant, D. V. & Vignali, D. A. Once a Treg, always a Treg? Immunol. Rev. 259, 173–191 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hernandez, A. L. et al. Sodium chloride inhibits the suppressive function of FOXP3+ regulatory T cells. J. Clin. Invest. 125, 4212–4222 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kleinewietfeld, M. et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 496, 518–522 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alexander, M. R. et al. Immune profiling reveals decreases in circulating regulatory and exhausted T cells in human hypertension. JACC Basic. Transl. Sci. 8, 319–336 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fabbiano, S. et al. Immunosuppression-independent role of regulatory T cells against hypertension-driven renal dysfunctions. Mol. Cell Biol. 35, 3528–3546 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shokoples, B. G. et al. P2RX7 gene knockout or antagonism reduces angiotensin II-induced hypertension, vascular injury and immune cell activation. J. Hypertens. 41, 1701–1712 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Junger, W. G. Immune cell regulation by autocrine purinergic signalling. Nat. Rev. Immunol. 11, 201–212 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, T. V. et al. ATP release drives heightened immune responses associated with hypertension. Sci. Immunol. 4, eaau6426 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schenk, U. et al. ATP inhibits the generation and function of regulatory T cells through the activation of purinergic P2X receptors. Sci. Signal. 4, ra12 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • MacLeod, M. K., Kappler, J. W. & Marrack, P. Memory CD4 T cells: generation, reactivation and re-assignment. Immunology 130, 10–15 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Itani, H. A. et al. CD70 exacerbates blood pressure elevation and renal damage in response to repeated hypertensive stimuli. Circ. Res. 118, 1233–1243 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao, L., do Carmo, L. S., Foss, J. D., Chen, W. & Harrison, D. G. Sympathetic enhancement of memory T-cell homing and hypertension sensitization. Circ. Res. 126, 708–721 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ribot, J. C., Lopes, N. & Silva-Santos, B.γδ T cells in tissue physiology and surveillance. Nat. Rev. Immunol. 21, 221–232 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Caillon, A. et al. γδ T cells mediate angiotensin II-induced hypertension and vascular injury. Circulation 135, 2155–2162 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Comeau, K., Shokoples, B., Caillon, A., Paradis, P. & Schiffrin, E. L. Angiotensin II-induced memory γδ T cells sensitize mice to a mild hypertensive stimulus. Am. J. Hypertens. 36, 619–628 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mamedov, M. R. et al. CRISPR screens decode cancer cell pathways that trigger γδ T cell detection. Nature 621, 188–195 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harly, C. et al. Key implication of CD277/butyrophilin-3 (BTN3A) in cellular stress sensing by a major human γδ T-cell subset. Blood 120, 2269–2279 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murakata, Y., Fujimaki, T. & Yamada, Y. Association of a butyrophilin, subfamily 2, member A1 gene polymorphism with hypertension. Biomed. Rep. 2, 818–822 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Artis, D. & Spits, H. The biology of innate lymphoid cells. Nature 517, 293–301 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sonnenberg, G. F. & Hepworth, M. R. Functional interactions between innate lymphoid cells and adaptive immunity. Nat. Rev. Immunol. 19, 599–613 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shah, A. S. V. et al. Global burden of atherosclerotic cardiovascular disease in people living with HIV: systematic review and meta-analysis. Circulation 138, 1100–1112 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peck, R. N. et al. Hypertension, kidney disease, HIV and antiretroviral therapy among Tanzanian adults: a cross-sectional study. BMC Med. 12, 125 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reis, K. G. et al. Blood pressure, T cells, and mortality in people with HIV in Tanzania during the first 2 years of antiretroviral therapy. J. Clin. Hypertens. 22, 1554–1562 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Brenchley, J. M., Price, D. A. & Douek, D. C. HIV disease: fallout from a mucosal catastrophe? Nat. Immunol. 7, 235–239 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. HIV-1-induced cytokines deplete homeostatic innate lymphoid cells and expand TCF7-dependent memory NK cells. Nat. Immunol. 21, 274–286 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cerwenka, A. & Lanier, L. L. Natural killer cell memory in infection, inflammation and cancer. Nat. Rev. Immunol. 16, 112–123 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van den Boorn, J. G. et al. Inflammasome-dependent induction of adaptive NK cell memory. Immunity 44, 1406–1421 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Pitzer, A. et al. DC ENaC-dependent inflammasome activation contributes to salt-sensitive hypertension. Circ. Res. 131, 328–344 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Omi, T. et al. An intronic variable number of tandem repeat polymorphisms of the cold-induced autoinflammatory syndrome 1 (CIAS1) gene modifies gene expression and is associated with essential hypertension. Eur. J. Hum. Genet. 14, 1295–1305 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pontillo, A. et al. Polymorphisms in inflammasome genes and susceptibility to HIV-1 infection. J. Acquir. Immune Defic. Syndr. 59, 121–125 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weng, N. P., Akbar, A. N. & Goronzy, J. CD28 T cells: their role in the age-associated decline of immune function. Trends Immunol. 30, 306–312 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tassiopoulos, K. et al. CD28-negative CD4+ and CD8+ T cells in antiretroviral therapy-naive HIV-infected adults enrolled in adult clinical trials group studies. J. Infect. Dis. 205, 1730–1738 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morris, S. R. et al. Inflammescent CX3CR1+CD57+CD8+ T cells are generated and expanded by IL-15. JCI Insight 5, e132963 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Youn, J. C. et al. Immunosenescent CD8+ T cells and C-X-C chemokine receptor type 3 chemokines are increased in human hypertension. Hypertension 62, 126–133 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei, S. C., Duffy, C. R. & Allison, J. P. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 8, 1069–1086 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Drobni, Z. D. et al. Association between immune checkpoint inhibitors with cardiovascular events and atherosclerotic plaque. Circulation 142, 2299–2311 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turker, I., Sharma, A., Huang, S., Johnson, D. B. & Alexander, M. R. Combination immune checkpoint inhibitor therapy is associated with increased blood pressure in melanoma patients. Hypertension 80, e43–e45 (2022).

    PubMed 

    Google Scholar
     

  • Panoulas, V. F. et al. Prevalence and associations of hypertension and its control in patients with rheumatoid arthritis. Rheumatology 46, 1477–1482 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mirghani, H. et al. The association of psoriasis, diabetes mellitus, and hypertension: a meta-analysis. Cureus 15, e48855 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manzi, S. et al. Age-specific incidence rates of myocardial infarction and angina in women with systemic lupus erythematosus: comparison with the Framingham Study. Am. J. Epidemiol. 145, 408–415 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patrick, D. M. et al. Isolevuglandins disrupt PU.1-mediated C1q expression and promote autoimmunity and hypertension in systemic lupus erythematosus. JCI Insight 7, e136678 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mathis, K. W. et al. Oxidative stress promotes hypertension and albuminuria during the autoimmune disease systemic lupus erythematosus. Hypertension 59, 673–679 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rudofsky, U. H. et al. Differences in the occurrence of hypertension among (NZB X NZW)F1, MRL-lpr, and BXSB mice with lupus nephritis. Am. J. Pathol. 116, 107–114 (1984).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clemmer, J. S., Hillegass, W. B. & Taylor, E. B. Antihypertensive effects of immunosuppressive therapy in autoimmune disease. J. Hum. Hypertens. 37, 300–306 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Herrera, J., Ferrebuz, A., MacGregor, E. G. & Rodriguez-Iturbe, B. Mycophenolate mofetil treatment improves hypertension in patients with psoriasis and rheumatoid arthritis. J. Am. Soc. Nephrol. 17, S218–S225 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoshida, S. et al. Infliximab, a TNF-ɑ inhibitor, reduces 24-h ambulatory blood pressure in rheumatoid arthritis patients. J. Hum. Hypertens. 28, 165–169 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Madhur, M. S. et al. Hypertension: do inflammation and immunity hold the key to solving this epidemic? Circ. Res. 128, 908–933 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lieb, W., Enserro, D. M., Sullivan, L. M. & Vasan, R. S. Residual cardiovascular risk in individuals on blood pressure-lowering treatment. J. Am. Heart Assoc. 4, e002155 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blacher, J. et al. Residual cardiovascular risk in treated hypertension and hyperlipidaemia: the PRIME study. J. Hum. Hypertens. 24, 19–26 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bellamy, L., Casas, J.-P., Hingorani, A. D. & Williams, D. J. Pre-eclampsia and risk of cardiovascular disease and cancer in later life: systematic review and meta-analysis. BMJ 335, 974 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar