
Wang, F. et al. Risk factors for mortality in hemodialysis patients with COVID-19: A systematic review and meta-analysis. Ren. fail. 43, 1394–1407 (2021).
Hsu, C. M. et al. COVID-19 among US dialysis patients: Risk factors and outcomes from a national dialysis provider. Am. J. Kidney. Dis. 77, 748-756.e1 (2021).
Ozturk, S. et al. The longitudinal evolution of post-COVID-19 outcomes among hemodialysis patients in Turkey. Kidney Int. Rep. 7, 1393–1405 (2022).
Och, A. et al. Persistent post-COVID-19 syndrome in hemodialyzed patients-A longitudinal cohort study from the north of Poland. J. Clin. Med. 10, 4451. https://doi.org/10.3390/jcm10194451 (2022).
Stepanova, N. et al. High-density lipoproteins and clinical outcomes of COVID-19 in hemodialysis patients: A multicenter, propensity-score matched case-control study. Ukr. J. Nephrol. Dial. 73, 22–30 (2022).
Matsumoto, C. et al. Long COVID and hypertension-related disorders: a report from the Japanese Society of Hypertension Project Team on COVID-19. Hypertens. Res. 46, 601–619 (2022).
Majidpoor, J. & Mortezaee, K. Interleukin-6 in SARS-CoV-2 induced disease: Interactions and therapeutic applications. Biomed. Pharmacother. 145, 112419. https://doi.org/10.1016/j.biopha.2021.112419 (2022).
Martonik, D., Parfieniuk-Kowerda, A., Rogalska, M. & Flisiak, R. The role of Th17 response in COVID-19. Cells. 10, 1550. https://doi.org/10.3390/cells10061550 (2021).
McMaster, W. G., Kirabo, A., Madhur, M. S. & Harrison, D. G. Inflammation, immunity, and hypertensive end-organ damage. Circ Res. 116, 1022–1033 (2015).
Robert, M. & Miossec, P. Effects of Interleukin 17 on the cardiovascular system. Autoimmun Rev. 16, 984–991 (2017).
Schultheiß, C., et al. The IL-1β, IL-6, and TNF cytokine triad is associated with post-acute sequelae of COVID-19. Cell Rep. Med. 3, 100663 https://doi.org/10.1016/j.xcrm.2022.100663 (2022).
Kappelmann, N., Dantzer, R. & Khandaker, G. M. Interleukin-6 as potential mediator of long-term neuropsychiatric symptoms of COVID-19. Psychoneuroendocrinology. 131, 105295. https://doi.org/10.1016/j.psyneuen.2021.105295 (2021).
Corrêa, H. L. et al. Phosphate and IL-10 concentration as predictors of long-covid in hemodialysis patients: A Brazilian study. Front Immunol. 13, 1006076. https://doi.org/10.3389/fimmu.2022.1006076 (2022).
Sheppard, J. P. et al. Association between blood pressure control and coronavirus disease 2019 outcomes in 45 418 symptomatic patients with hypertension: An observational cohort study. Hypertension. 77, 846–855 (2021).
Chen, J. et al. Hypertension as an independent risk factor for severity and mortality in patients with COVID-19: A retrospective study. Postgrad. Med. J. 98, 515–522 (2021).
Mallamaci, F. et al. Treatment-resistant hypertension in the hemodialysis population: A 44-h ambulatory blood pressure monitoring-based study. J. Hypertens. 38, 1849–1856 (2020).
Gyöngyösi, M. et al. Long COVID and the cardiovascular system-elucidating causes and cellular mechanisms in order to develop targeted diagnostic and therapeutic strategies: A joint Scientific Statement of the ESC Working Groups on Cellular Biology of the Heart and Myocardial and Pericardial Diseases. Cardiovasc. Res. 119, 336–356 (2023).
Yin, J. X. et al. Increased interleukin-6 is associated with long COVID-19: A systematic review and meta-analysis. Infect. Dis. Poverty. 12, 43. https://doi.org/10.1186/s40249-023-01086-z (2023).
Queiroz, M. A. F. et al. Cytokine profiles associated with acute COVID-19 and long COVID-19 syndrome. Front. Cell. Infect. Microbiol. 12, 922422. https://doi.org/10.3389/fcimb.2022.922422 (2022).
Williams, E. S., et al. Cytokine deficiencies in patients with long-COVID. J. Clin. Cell. Immunol. 13, 672. PMC9894377 (2022).
Al-Hakeim, H. K., Al-Rubaye, H. T., Al-Hadrawi, D. S., Almulla, A. F. & Maes, M. Long-COVID post-viral chronic fatigue and affective symptoms are associated with oxidative damage, lowered antioxidant defenses and inflammation: a proof of concept and mechanism study. Mol. Psychiatry. 28, 564–578 (2023).
Cobo, G., Lindholm, B., & Stenvinkel, P. Chronic inflammation in end-stage renal disease and dialysis. Nephrol. Dial. Transplant. 33, iii35-iii40 (2018).
Esposito, P., et al. Effects of Different Dialysis Strategies on Inflammatory Cytokine Profile in Maintenance Hemodialysis Patients with COVID-19: A Randomized Trial. J. Clin. Med. 10, 1383 https://doi.org/10.3390/jcm10071383 (2021).
MacRae, C., Mercer, S. W., Guthrie, B. & Henderson, D. Comorbidity in chronic kidney disease: a large cross-sectional study of prevalence in Scottish primary care. Br. J. Gen. Pract. 71, e243–e249 (2021).
Lisowska, K., A., Storoniak, H., Dębska-Ślizień, A. T cell subpopulations and cytokine levels in hemodialysis patients. Hum. Immunol. 83, 134–143 (2022).
Prietl, B. et al. Chronic inflammation might protect hemodialysis patients from severe COVID-19. Front. Immunol. 13, 821818. https://doi.org/10.3389/fimmu.2022.821818 (2022).
Ciceri, P., et al. Cytokine and Chemokine Retention Profile in COVID-19 Patients with Chronic Kidney Disease. Toxins (Basel). 14, 673. https://doi.org/10.3390/toxins14100673 (2022).
Castillo-Rodríguez, E., et al. Inflammatory cytokines as uremic toxins: “Ni Son Todos Los Que Estan, Ni Estan Todos Los Que Son”. Toxins (Basel). 9, 114. https://doi.org/10.3390/toxins9040114 (2017).
Claro, L., M., et al. The impact of uremic toxicity induced inflammatory response on the cardiovascular burden in chronic kidney disease. Toxins (Basel). 10, 384 https://doi.org/10.3390/toxins10100384 (2018).
Cohen, G. Immune Dysfunction in Uremia 2020. Toxins (Basel). 12, 439. https://doi.org/10.3390/toxins12070439 (2020).
Mazur, T. et al. Chronic inflammation and progression of chronic kidney disease in patients with type 2 diabetes. Ukr. J. Nephr. Dial. 72, 36–43 (2021).
Tanase, D., M., et al. Arterial hypertension and interleukins: potential therapeutic target or future diagnostic marker? Int. J. Hypertens. 2019, 3159283. https://doi.org/10.1155/2019/3159283 (2019).
McMaster, W. G., Kirabo, A., Madhur, M. S. & Harrison, D. G. Inflammation, immunity, and hypertensive end-organ damage. Circ. Res. 116, 1022–1033 (2015).
Pacurari, M., Kafoury, R., Tchounwou, P. B., Ndebele, K. The Renin-Angiotensin-aldosterone system in vascular inflammation and remodeling. Int. J. Inflam. 2014, 689360 https://doi.org/10.1155/2014/689360 (2014).
Muhamad, S. A. et al. COVID-19 and hypertension: The what, the why, and the how. Front. Physiol. 12, 665064. https://doi.org/10.3389/fphys.2021.665064 (2021).
Khan, S. et al. SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-κB pathway. Elife. 10, e68563. https://doi.org/10.7554/eLife.68563 (2021).
Patel, S. K. et al. Plasma ACE2 activity is persistently elevated following SARS-CoV-2 infection: Implications for COVID-19 pathogenesis and consequences. Eur. Respir. J. 57, 2003730. https://doi.org/10.1183/13993003.03730-2020 (2021).
Lee, D. L. et al. Angiotensin II hypertension is attenuated in interleukin-6 knockout mice. Am. J. Physiol. Heart Circ. Physiol. 290, H935-940 (2006).
Madhur, M. S. et al. Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension. 55, 500–507 (2010).
Luther, J. M. et al. Angiotensin II induces interleukin-6 in humans through a mineralocorticoid receptor-dependent mechanism. Hypertension. 48, 1050–1057 (2006).
Orejudo, M., et al. Interleukin 17A participates in renal inflammation associated to experimental and human hypertension. Front. Pharmacol. 10, 1015 https://doi.org/10.3389/fphar.2019.01015 (2019).
Gallo, G., Volpe, M., Savoia, C. Endothelial dysfunction in hypertension: Current concepts and clinical implications. Front. Med. (Lausanne). 8, 798958 https://doi.org/10.3389/fmed.2021.798958 (2021).
Xu, S. W., Ilyas, I. & Weng, J. P. Endothelial dysfunction in COVID-19: An overview of evidence, biomarkers, mechanisms and potential therapies. Acta Pharmacol. Sin. 44, 695–709 (2022).
Al-Hakeim, H. K., Al-Rubaye, H. T., Al-Hadrawi, D. S., Almulla, A. F. & Maes, M. Long-COVID post-viral chronic fatigue and affective symptoms are associated with oxidative damage, lowered antioxidant defenses and inflammation: A proof of concept and mechanism study. Mol. Psychiatry. 28, 564–578 (2023).
Charfeddine, S. et al. Long COVID 19 syndrome: Is it related to microcirculation and endothelial dysfunction? insights from TUN-EndCOV study. Front. Cardiovasc. Med. 8, 745758. https://doi.org/10.3389/fcvm.2021.745758 (2021).
Yong, S. J. Long COVID or post-COVID-19 syndrome: Putative pathophysiology, risk factors, and treatments. Infect. Dis. (Lond) 53, 737–754 (2021).
- The Renal Warrior Project. Join Now
- Source: https://www.nature.com/articles/s41598-024-54930-z