Search
Search
Close this search box.

Hemodialysis-induced positional changes in lamina cribrosa – Scientific Reports

  • Webster, A. C., Nagler, E. V., Morton, R. L. & Masson, P. chronic kidney disease. Lancet (London, England) 389, 1238–1252. https://doi.org/10.1016/s0140-6736(16)32064-5 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Fauchald, P. Transcapillary colloid osmotic gradient and body fluid volumes in renal failure. Kidney Int. 29, 895–900. https://doi.org/10.1038/ki.1986.83 (1986).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leypoldt, J. K. et al. Relationship between volume status and blood pressure during chronic hemodialysis. Kidney Int. 61, 266–275. https://doi.org/10.1046/j.1523-1755.2002.00099.x (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Wong, C. W., Wong, T. Y., Cheng, C. Y. & Sabanayagam, C. Kidney and eye diseases: common risk factors, etiological mechanisms, and pathways. Kidney Int. 85, 1290–1302. https://doi.org/10.1038/ki.2013.491 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Nongpiur, M. E. et al. Chronic kidney disease and intraocular pressure: The Singapore Malay Eye Study. Ophthalmology 117, 477–483. https://doi.org/10.1016/j.ophtha.2009.07.029 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Tomazzoli, L., De Natale, R., Lupo, A. & Parolini, B. Visual acuity disturbances in chronic renal failure. Int. J. Ophthalmol. 214, 403–405. https://doi.org/10.1159/000027533 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Diaz-Couchoud, P., Bordas, F. D., Garcia, J. R., Camps, E. M. & Carceller, A. Corneal disease in patients with chronic renal insufficiency undergoing hemodialysis. Cornea 20, 695–702. https://doi.org/10.1097/00003226-200110000-00005 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chelala, E. et al. Effect of hemodialysis on visual acuity, intraocular pressure, and macular thickness in patients with chronic kidney disease. Clin. Ophthalmol. 9, 109–114. https://doi.org/10.2147/opth.s74481 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jung, J. W., Yoon, M. H., Lee, S. W. & Chin, H. S. Effect of hemodialysis (HD) on intraocular pressure, ocular surface, and macular change in patients with chronic renal failure. Effect of hemodialysis on the ophthalmologic findings. Graefe’s Arch. Clin. Exp. Ophthalmol. 251, 153–162. https://doi.org/10.1007/s00417-012-2032-6 (2013).

    Article 

    Google Scholar
     

  • Ulaş, F. et al. Evaluation of choroidal and retinal thickness measurements using optical coherence tomography in non-diabetic haemodialysis patients. Int. Ophthalmol. 33, 533–539. https://doi.org/10.1007/s10792-013-9740-8 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Çelikay, O., Çalışkan, S., Biçer, T., Kabataş, N. & Gürdal, C. The acute effect of hemodialysis on choroidal thickness. J. Ophthalmol. 2015, 528681. https://doi.org/10.1155/2015/528681 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jung, J. W., Chin, H. S., Lee, D. H., Yoon, M. H. & Kim, N. R. Changes in subfoveal choroidal thickness and choroidal extravascular density by spectral domain optical coherence tomography after haemodialysis: A pilot study. Br. J. Ophthalmol. 98, 207–212. https://doi.org/10.1136/bjophthalmol-2013-303645 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Mullaem, G. & Rosner, M. H. Ocular problems in the patient with end-stage renal disease. Semin. Dial. 25, 403–407. https://doi.org/10.1111/j.1525-139X.2012.01098.x (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Deva, R. et al. Vision-threatening retinal abnormalities in chronic kidney disease stages 3 to 5. Clin. J. Am. Soc. Nephrol. CJASN 6, 1866–1871. https://doi.org/10.2215/cjn.10321110 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Nusinovici, S., Sabanayagam, C., Teo, B. W., Tan, G. S. W. & Wong, T. Y. Vision impairment in CKD patients: Epidemiology, mechanisms, differential diagnoses, and prevention. Am. J. Kidney Dis. 73, 846–857. https://doi.org/10.1053/j.ajkd.2018.12.047 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Tham, Y. C., Tao, Y., Zhang, L. & Rim, T. H. T. Is kidney function associated with primary open-angle glaucoma? Findings from the Asian Eye Epidemiology Consortium. Bri. J. Ophthalmol. 104, 1298–1303. https://doi.org/10.1136/bjophthalmol-2019-314890 (2020).

    Article 

    Google Scholar
     

  • Wong, C. W. et al. Increased burden of vision impairment and eye diseases in persons with chronic kidney disease—A population-based study. EBioMedicine 5, 193–197. https://doi.org/10.1016/j.ebiom.2016.01.023 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, T. J., Wu, C. K., Hu, C. C., Keller, J. J. & Lin, H. C. Increased risk of co-morbid eye disease in patients with chronic renal failure: A population-based study. Ophthal. Epidemiol. 19, 137–143. https://doi.org/10.3109/09286586.2012.680531 (2012).

    Article 

    Google Scholar
     

  • Gao, B. et al. Ocular fundus pathology and chronic kidney disease in a Chinese population. BMC Nephrol. 12, 62. https://doi.org/10.1186/1471-2369-12-62 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shim, S. H. et al. Association between renal function and open-angle glaucoma: The Korea National Health and Nutrition Examination Survey 2010–2011. Ophthalmology 123, 1981–1988. https://doi.org/10.1016/j.ophtha.2016.06.022 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Price, D. A., Harris, A., Siesky, B. & Mathew, S. The influence of translaminar pressure gradient and intracranial pressure in glaucoma: A review. J. Glaucoma 29, 141–146. https://doi.org/10.1097/ijg.0000000000001421 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Berdahl, J. P., Ferguson, T. J. & Samuelson, T. W. Periodic normalization of the translaminar pressure gradient prevents glaucomatous damage. Med. Hypotheses 144, 110258. https://doi.org/10.1016/j.mehy.2020.110258 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Jonas, J. B., Berenshtein, E. & Holbach, L. Anatomic relationship between lamina cribrosa, intraocular space, and cerebrospinal fluid space. Investig. Ophthalmol. Vis. Sci. 44, 5189–5195. https://doi.org/10.1167/iovs.03-0174 (2003).

    Article 

    Google Scholar
     

  • Jonas, J. B., Berenshtein, E. & Holbach, L. Lamina cribrosa thickness and spatial relationships between intraocular space and cerebrospinal fluid space in highly myopic eyes. Investig. Ophthalmol. Vis. Sci. 45, 2660–2665. https://doi.org/10.1167/iovs.03-1363 (2004).

    Article 

    Google Scholar
     

  • Ren, R. et al. Lamina cribrosa and peripapillary sclera histomorphometry in normal and advanced glaucomatous Chinese eyes with various axial length. Investig. Ophthalmol. Vis. Sci. 50, 2175–2184. https://doi.org/10.1167/iovs.07-1429 (2009).

    Article 

    Google Scholar
     

  • Lee, W. J. et al. Change in optic nerve after intracranial pressure reduction in children. Ophthalmology 124, 1713–1715. https://doi.org/10.1016/j.ophtha.2017.05.017 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Hahnenberger, R. W. Inhibition of fast anterograde axoplasmic transport by a pressure barrier. The effect of pressure gradient and maximal pressure. Acta Physiol. Scand. 109, 117–121. https://doi.org/10.1111/j.1748-1716.1980.tb06575.x (1980).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quigley, H. A., Guy, J. & Anderson, D. R. Blockade of rapid axonal transport. Effect of intraocular pressure elevation in primate optic nerve. Arch. Ophthalmol. 97, 525–531. https://doi.org/10.1001/archopht.1979.01020010269018 (1979).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parsons, A. D., Sanscrainte, C., Leone, A., Griepp, D. W. & Rahme, R. Dialysis disequilibrium syndrome and intracranial pressure fluctuations in neurosurgical patients undergoing renal replacement therapy: systematic review and pooled analysis. World Neurosurg. 170, 2–6. https://doi.org/10.1016/j.wneu.2022.11.142 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Mistry, K. Dialysis disequilibrium syndrome prevention and management. Int. J. Nephrol. Renovasc. Dis. 12, 69–77. https://doi.org/10.2147/ijnrd.s165925 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shin, Y. U. et al. Optical coherence tomography angiography analysis of changes in the retina and the choroid after haemodialysis. Sci. Rep. 8, 17184. https://doi.org/10.1038/s41598-018-35562-6 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shin, Y. U. et al. Evaluation of changes in choroidal thickness and the choroidal vascularity index after hemodialysis in patients with end-stage renal disease by using swept-source optical coherence tomography. Medicine 98, e15421. https://doi.org/10.1097/md.0000000000015421 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shin, Y. U. & Kim, J. H. Effect of hemodialysis on anterior chamber angle measured by anterior segment optical coherence tomography. J. Ophthalmol. 2019, 2406547. https://doi.org/10.1155/2019/2406547 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, W. J. et al. Effect of hemodialysis on peripapillary choroidal thickness measured by swept-source optical coherence tomography. J. Glaucoma 30, 459–464. https://doi.org/10.1097/ijg.0000000000001762 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Quigley, H. A., Addicks, E. M., Green, W. R. & Maumenee, A. E. Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch. Ophthalmol. 99, 635–649. https://doi.org/10.1001/archopht.1981.03930010635009 (1981).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, E. J., Kim, T. W. & Weinreb, R. N. Reversal of lamina cribrosa displacement and thickness after trabeculectomy in glaucoma. Ophthalmology 119, 1359–1366. https://doi.org/10.1016/j.ophtha.2012.01.034 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, S. H. et al. Reduction of the lamina cribrosa curvature after trabeculectomy in glaucoma. Investig. Ophthalmol. Vis. Sci. 57, 5006–5014. https://doi.org/10.1167/iovs.15-18982 (2016).

    Article 

    Google Scholar
     

  • Gietzelt, C. et al. Structural reversal of disc cupping after trabeculectomy alters bruch membrane opening-based parameters to assess neuroretinal rim. Am. J. Ophthalmol. 194, 143–152. https://doi.org/10.1016/j.ajo.2018.07.016 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Lund, A. et al. Intracranial pressure during hemodialysis in patients with acute brain injury. Acta Anaesthesiol. Scand. 63, 493–499. https://doi.org/10.1111/aas.13298 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, Y. W., Girard, M. J., Mari, J. M. & Jeoung, J. W. Anterior displacement of lamina cribrosa during valsalva maneuver in young healthy eyes. PLoS ONE 11, e0159663. https://doi.org/10.1371/journal.pone.0159663 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, J. H. et al. The association between prelaminar tissue thickness and peripapillary choroidal thickness in untreated normal-tension glaucoma patients. Medicine 98, e14044. https://doi.org/10.1097/md.0000000000014044 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, Y. W., Jeoung, J. W., Girard, M. J., Mari, J. M. & Park, K. H. Positional and curvature difference of lamina cribrosa according to the baseline intraocular pressure in primary open-angle glaucoma: A swept-source optical coherence tomography (SS-OCT) study. PLoS ONE 11, e0162182. https://doi.org/10.1371/journal.pone.0162182 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chauhan, B. C. et al. Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter. Ophthalmology 120, 535–543. https://doi.org/10.1016/j.ophtha.2012.09.055 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Farazdaghi, M. K. et al. Utility of ultrasound and optical coherence tomography in differentiating between papilledema and pseudopapilledema in children. J. Neuro-Ophthalmol. 41, 488–495. https://doi.org/10.1097/wno.0000000000001248 (2021).

    Article 

    Google Scholar
     

  • Rufai, S. R., Hisaund, M., Jeelani, N. U. O. & McLean, R. J. Detection of intracranial hypertension in children using optical coherence tomography: A systematic review. BMJ Open 11, e046935. https://doi.org/10.1136/bmjopen-2020-046935 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vijay, V. et al. Using optical coherence tomography as a surrogate of measurements of intracranial pressure in idiopathic intracranial hypertension. JAMA Ophthalmol. 138, 1264–1271. https://doi.org/10.1001/jamaophthalmol.2020.4242 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Hu, J. et al. Effect of hemodialysis on intraocular pressure and ocular perfusion pressure. JAMA Ophthalmol. 131, 1525–1531. https://doi.org/10.1001/jamaophthalmol.2013.5599 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Deokule, S. & Weinreb, R. N. Relationships among systemic blood pressure, intraocular pressure, and open-angle glaucoma. Can. J. Ophthalmol. 43, 302–307. https://doi.org/10.3129/i08-061 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Leske, M. C., Wu, S. Y., Hennis, A., Honkanen, R. & Nemesure, B. Risk factors for incident open-angle glaucoma: The Barbados Eye Studies. Ophthalmology 115, 85–93. https://doi.org/10.1016/j.ophtha.2007.03.017 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Hulsman, C. A., Vingerling, J. R., Hofman, A., Witteman, J. C. & de Jong, P. T. Blood pressure, arterial stiffness, and open-angle glaucoma: the Rotterdam study. Arch. Ophthalmol. 125, 805–812. https://doi.org/10.1001/archopht.125.6.805 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, S. H., Kim, T. W., Lee, E. J., Girard, M. J. & Mari, J. M. Diagnostic power of lamina cribrosa depth and curvature in glaucoma. Investig. Ophthalmol. Vis. Sci. 58, 755–762. https://doi.org/10.1167/iovs.16-20802 (2017).

    Article 

    Google Scholar
     

  • Sehi, M., Flanagan, J. G., Zeng, L., Cook, R. J. & Trope, G. E. Relative change in diurnal mean ocular perfusion pressure: A risk factor for the diagnosis of primary open-angle glaucoma. Investig. Ophthalmol. Vis. Sci. 46, 561–567. https://doi.org/10.1167/iovs.04-1033 (2005).

    Article 

    Google Scholar