Generic residue numbering of the GAIN domain of adhesion GPCRs

  • Chiang, N.-Y. et al. GPR56/ADGRG1 Activation promotes melanoma cell migration via NTF dissociation and CTF-mediated Gα12/13/RhoA signaling. J. Invest. Dermatol. 137, 727–736 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scholz, N. Cancer cell mechanics: Adhesion G protein-coupled receptors in action? Front. Oncol. 8, 59 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kan, Z. et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 466, 869–873 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Langenhan, T., Piao, X. & Monk, K. R. Adhesion G protein-coupled receptors in nervous system development and disease. Nat. Rev. Neurosci. 17, 550–561 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wittlake, A., Prömel, S. & Schöneberg, T. The evolutionaryhistory of vertebrate adhesion GPCRs and its implication on their classification. Int. J. Mol. Sci. 22, 11803 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Batebi, H. et al. Mechanistic insights into G-protein coupling with an agonist-bound G-protein-coupled receptor. Nat. Struct. Mol. Biol. 31, 1692–1701 (2024).

  • Prömel, S., Langenhan, T. & Araç, D. Matching structure with function: The GAIN domain of Adhesion-GPCR and PKD1-like proteins. Trends Pharmacol. Sci. 34, 470–478 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Liao, Y., Pei, J., Cheng, H. & Grishin, N. V. An ancient autoproteolytic domain found in GAIN, ZU5 and Nucleoporin98. J. Mol. Biol. 426, 3935–3945 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Araç, D. et al. A novel evolutionarily conserved domain of cell-adhesion GPCRs mediates autoproteolysis. EMBO J. 31, 1364–1378 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pohl, F. et al. Structural basis of GAIN domain autoproteolysis and cleavage-resistance in the adhesion G-protein coupled receptors. Preprint at https://doi.org/10.1101/2023.03.12.532270 (2023).

  • Liebscher, I. et al. A tethered agonist within the ectodomain activates the adhesion G protein-coupled receptors GPR126 and GPR133. Cell Rep. 9, 2018–2026 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stoveken, H. M., Hajduczok, A. G., Xu, L. & Tall, G. G. Adhesion G protein-coupled receptors are activated by exposure of a cryptic tethered agonist. Proc. Natl Acad. Sci. USA 112, 6194–6199 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mathiasen, S. et al. G12/13 is activated by acute tethered agonist exposure in the adhesion GPCR ADGRL3. Nat. Chem. Biol. 16, 1343–1350 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, B. et al. GAIN domain-mediated cleavage is required for activation of G protein- coupled receptor 56 (GPR56) by its natural ligands and a small-molecule agonist. J. Biol. Chem. 294, 19246–19254 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paavola, K. J., Stephenson, J. R., Ritter, S. L., Alter, S. P. & Hall, R. A. The N terminus of the adhesion G protein-coupled receptor GPR56 controls receptor signaling activity. J. Biol. Chem. 286, 28914–28921 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frenster, J. D. et al. Functional impact of intramolecular cleavage and dissociation of adhesion G protein–coupled receptor GPR1. J. Biol. Chem. 296, 100798 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, L. et al. GPR56 Regulates VEGF production and angiogenesis during melanoma progression. Cancer Res. 71, 5558–5568 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seufert, F., Chung, Y. K., Hildebrand, P. W. & Langenhan, T. 7TM domain structures of adhesion GPCRs: what’s new and what’s missing? Trends Biochem. Sci. 48, 726–739 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mao, C. et al. Conformational transitions and activation of the adhesion receptor CD97. Mol. Cell 84, 570–583 (2024).

  • Scholz, N. et al. The adhesion GPCR latrophilin/CIRL shapes mechanosensation. Cell Rep. 11, 866–874 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Petersen, S. C. et al. The adhesion GPCR GPR126 has distinct, domain-dependent functions in schwann cell development mediated by interaction with Laminin-211. Neuron 85, 755–769 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilde, C. et al. The constitutive activity of the adhesion GPCR GPR114/ADGRG5 is mediated by its tethered agonist. FASEB J. 30, 666–673 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, D. et al. CD97 promotes spleen dendritic cell homeostasis through the mechanosensing of red blood cells. Science 375, eabi5965 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boyden, S. E. et al. Vibratory Urticaria Associated with a Missense Variant in ADGRE2. N. Engl. J. Med. 374, 656–663 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scholz, N. et al. Molecular sensing of mechano- and ligand-dependent adhesion GPCR dissociation. Nature 615, 945–953 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu, C. et al. Unveiling Mechanical Activation: GAIN Domain Unfolding and Dissociation in Adhesion GPCRs. Nano Lett. 23, 9179–9186 (2023).

  • Dumas, L. et al. Uncovering and engineering the mechanical properties of the adhesion GPCR ADGRG1 GAIN domain. Preprint at https://doi.org/10.1101/2023.04.05.535724 (2023).

  • Beliu, G. et al. Tethered agonist exposure in intact adhesion/class B2 GPCRs through intrinsic structural flexibility of the GAIN domain. Mol. Cell 81, 905–921 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhong, B. L. et al. Piconewton forces mediate GAIN domain dissociation of the Latrophilin-3 adhesion GPCR. Nano Lett. 23, 9187–9194 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Xiao, P. et al. Tethered peptide activation mechanism of the adhesion GPCRs ADGRG2 and ADGRG4. Nature 604, 771–778 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ping, Y. Q. et al. Structures of the glucocorticoid-bound adhesion receptor GPR97–Go complex. Nature 589, 620–626 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barros-Álvarez, X. et al. The tethered peptide activation mechanism of adhesion GPCRs. Nature 604, 757–762 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ping, Y. Q. et al. Structural basis for the tethered peptide activation of adhesion GPCRs. Nature 604, 763–770 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, Y. et al. Optimization of a peptide ligand for the adhesion GPCR ADGRG2 provides a potent tool to explore receptor biology. J. Biol. Chem. 296, 100174 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leon, K. et al. Structural basis for adhesion G protein-coupled receptor Gpr126 function. Nat. Commun. 11, 194 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salzman, G. S. et al. Structural basis for regulation of GPR56/ADGRG1 by its alternatively spliced extracellular domains. Neuron 91, 1292–1304 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chu, T. Y. et al. GPR97 triggers inflammatory processes in human neutrophils via a macromolecular complex upstream of PAR2 activation. Nat. Commun. 13, 6385 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ballesteros, J. A. & Weinstein, H. Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci. 25, 366–428 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Isberg, V. et al. Generic GPCR residue numbers – Aligning topology maps while minding the gaps. Trends Pharmacol. Sci. 36, 22–31 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wootten, D., Simms, J., Miller, L. J., Christopoulos, A. & Sexton, P. M. Polar transmembrane interactions drive formation of ligand-specific and signal pathway-biased family B G protein-coupled receptor conformations. Proc. Natl Acad. Sci. USA 110, 5211–5216 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pándy-Szekeres, G. et al. GPCRdb in 2023: state-specific structure models using AlphaFold2 and new ligand resources. Nucleic Acids Res. 51, D395–D402 (2022).

    Article 
    PubMed Central 

    Google Scholar
     

  • Linden, O. P. J., van, Kooistra, A. J., Leurs, R., Esch, I. J. Pde & Graaf, C. de. KLIFS: A knowledge-Based structural database to navigate kinase–ligand interaction space. J. Med. Chem. 57, 249–277 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Kanev, G. K., de Graaf, C., Westerman, B. A., de Esch, I. J. P. & Kooistra, A. J. KLIFS: an overhaul after the first 5 years of supporting kinase research. Nucleic Acids Res. 49, gkaa895 (2020).


    Google Scholar
     

  • Kanev, G. K. et al. The landscape of atypical and eukaryotic protein kinases. Trends Pharmacol. Sci. 40, 818–832 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Flock, T. et al. Universal allosteric mechanism for Gα activation by GPCRs. Nature 524, 173–179 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sente, A. et al. Molecular mechanism of modulating arrestin conformation by GPCR phosphorylation. Nat. Struct. Mol. Biol. 25, 538–545 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herrera, L. P. T. et al. GPCRdb in 2025: adding odorant receptors, data mapper, structure similarity search and models of physiological ligand complexes. Nucleic Acids Res. gkae1065 https://doi.org/10.1093/nar/gkae1065 (2024).

  • Kooistra, A. J. et al. GPCRdb in 2021: Integrating GPCR sequence, structure and function. Nucleic Acids Res. 49, D335–D343 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pándy-Szekeres, G. et al. GPCRdb in 2018: Adding GPCR structure models and ligands. Nucleic Acids Res. 46, D440–D446 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Krissinel, E. Enhanced fold recognition using efficient short fragment clustering. J. Mol. Biochem. 1, 76 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Isberg, V. et al. GPCRDB: an information system for G protein-coupled receptors. Nucleic Acids Res. 42, D422–D425 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pérez-Hernández, G. et al. mdciao: Accessible analysis and visualization of molecular dynamics simulation data. Preprint at https://doi.org/10.1101/2022.07.15.500163 (2022).

  • Moreno-Salinas, A. L. et al. Convergent selective signaling impairment exposes the pathogenicity of latrophilin-3 missense variants linked to inheritable ADHD susceptibility. Mol. Psychiatry 27, 2425–2438 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Avila-Zozaya, M., Rodríguez-Hernández, B., Monterrubio-Ledezma, F., Cisneros, B. & Boucard, A. A. Thwarting of Lphn3 functions in cell motility and signaling by cancer-related GAIN domain somatic mutations. Cells 11, 1913 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wright, S. C. et al. A conserved molecular switch in Class F receptors regulates receptor activation and pathway selection. Nat. Commun. 10, 667 (2019).

  • Lin, H. et al. Structures of the ADGRG2–Gs complex in apo and ligand-bound forms. Nat. Chem. Biol. 18, 1196–1203(2022).

  • Bernadyn, T. F., Vizurraga, A., Adhikari, R., Kwarcinski, F. & Tall, G. G. GPR114/ADGRG5 is activated by its tethered-peptide-agonist because it is a cleaved adhesion GPCR. J. Biol. Chem. 299, 105223 (2023).

  • Kishore, A., Purcell, R. H., Nassiri-Toosi, Z. & Hall, R. A. Stalk-dependent and stalk-independent signaling by the adhesion G protein-coupled receptors GPR56 (ADGRG1) and BAI1 (ADGRB1). J. Biol. Chem. 291, 3385–3394 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Müller, A. et al. Oriented Cell Division in the C. elegans Embryo Is Coordinated by G-Protein Signaling Dependent on the Adhesion GPCR LAT-1. PLoS Genet. 11, https://doi.org/10.1371/journal.pgen.1005624 (2015).

  • Scholz, N. et al. Mechano-dependent signaling by latrophilin/CIRL quenches cAMP in proprioceptive neurons. ELife 6, https://doi.org/10.7554/elife.28360 (2017).

  • Monk, K. R. et al. A G Protein–coupled receptor is essential for schwann cells to initiate myelination. Science 325, 1402–1405 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langenhan, T. et al. Model organisms in G protein–coupled receptor research. Mol. Pharmacol. 88, 596–603 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bergmann, C. et al. Polycystic kidney disease. Nat. Rev. Dis. Prim. 4, 50 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Qian, F. et al. Cleavage of polycystin-1 requires the receptor for egg jelly domain and is disrupted by human autosomal-dominant polycystic kidney disease 1-associated mutations. Proc. Natl. Acad. Sci. USA 99, 16981–16986 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, S. et al. Essential role of cleavage of Polycystin-1 at G protein-coupled receptor proteolytic site for kidney tubular structure. Proc. Natl. Acad. Sci. USA 104, 18688–18693 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei, W., Hackmann, K., Xu, H., Germino, G. & Qian, F. Characterization of cis-autoproteolysis of polycystin-1, the product of human polycystic kidney disease 1 gene. J. Biol. Chem. 282, 21729–21737 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scholz, N., Langenhan, T. & Schöneberg, T. Revisiting the classification of adhesion GPCRs. Ann. N. Y. Acad. Sci. 1456, 80–95 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nordström, K. J. V., Lagerström, M. C., Wallér, L. M. J., Fredriksson, R. & Schiöth, H. B. The secretin GPCRs descended from the family of adhesion GPCRs. Mol. Biol. Evol. 26, 71–84 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Dohrmann, M. & Wörheide, G. Dating early animal evolution using phylogenomic data. Sci. Rep. 7, 3599 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krishnan, A. et al. The GPCR repertoire in the demosponge Amphimedon queenslandica: insights into the GPCR system at the early divergence of animals. BMC Evol. Biol. 14, 270 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Illergård, K., Ardell, D. H. & Elofsson, A. Structure is three to ten times more conserved than sequence—A study of structural response in protein cores. Proteins Struct. Funct. Bioinform. 77, 499–508 (2009).

    Article 

    Google Scholar
     

  • Piao, X. et al. Genotype–phenotype analysis of human frontoparietal polymicrogyria syndromes. Ann. Neurol. 58, 680–687 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang, G.-W. et al. The adhesion G protein-coupled receptor GPR56/ADGRG1 is an inhibitory receptor on human NK cells. Cell Rep. 15, 1757–1770 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Russell, R. B. & Barton, G. J. Multiple protein sequence alignment from tertiary structure comparison: Assignment of global and residue confidence levels. Proteins Struct. Funct. Bioinform. 14, 309–323 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Frishman, D. & Argos, P. Knowledge‐based protein secondary structure assignment. Proteins Struct. Funct. Bioinform. 23, 566–579 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Agirre, J. et al. The CCP4 suite: integrative software for macromolecular crystallography. Acta Crystallogr. Sect. D Struct. Biol. 79, 449–461 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Pedregosa, F. et al. Scikit-learn: Machine learning. Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    MathSciNet 

    Google Scholar
     

  • Varadi, M. et al. AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ng, P. C. & Henikoff, S. Predicting deleterious amino acid substitutions. Genome Res. 11, 863–874 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adzhubei, I., Jordan, D. M. & Sunyaev, S. R. Predicting functional effect of human missense mutations using PolyPhen-2. Curr. Protoc. Hum. Genet. https://doi.org/10.1002/0471142905.hg0720s76 (2013).

  • Seufert F. et al. Generic residue numbering of the GAIN domain of adhesion GPCRs. Generic residue numbering of the GAIN domain of adhesion GPCRs. https://doi.org/10.5281/zenodo.12515544 (2024).

  • Seufert F. et al. Generic residue numbering of the GAIN domain of adhesion GPCRs. FloSeu/GAIN-GRN: GAIN-GRN version 1.0. https://doi.org/10.5281/zenodo.14140353 (2024).

  • Munk, C., Harpsøe, K., Hauser, A. S., Isberg, V. & Gloriam, D. E. Integrating structural and mutagenesis data to elucidate GPCR ligand binding. Curr. Opin. Pharmacol. 30, 51–58 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collins, R. L. et al. A structural variation reference for medical and population genetics. Nature 581, 444–451 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vincent, F. et al. Toward a shared vision for cancer genomic data. N. Engl. J. Med. 375, 1109–1112 (2016).

    Article 

    Google Scholar