Search
Search
Close this search box.

Gene regulatory networks in disease and ageing – Nature Reviews Nephrology

  • Enge, M. et al. Single-cell analysis of human pancreas reveals transcriptional signatures of aging and somatic mutation patterns. Cell 171, 321–330.e14 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martinez-Jimenez, C. P. et al. Aging increases cell-to-cell transcriptional variability upon immune stimulation. Science 355, 1433–1436 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maurano, M. T. et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190–1195 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, T. I. & Young, R. A. Transcriptional regulation and its misregulation in disease. Cell 152, 1237–1251 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Southworth, L. K., Owen, A. B. & Kim, S. K. Aging mice show a decreasing correlation of gene expression within genetic modules. PLoS Genet. 5, e1000776 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, J.-H. et al. Loss of epigenetic information as a cause of mammalian aging. Cell 186, 305–326.e27 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levy, O. et al. Age-related loss of gene-to-gene transcriptional coordination among single cells. Nat. Metab. 2, 1305–1315 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tatar, M. et al. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292, 107–110 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blüher, M., Kahn, B. B. & Kahn, C. R. Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299, 572–574 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Kamimoto, K. et al. Dissecting cell identity via network inference and in silico gene perturbation. Nature 614, 742–751 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levin, M. Bioelectric signaling: reprogrammable circuits underlying embryogenesis, regeneration, and cancer. Cell 184, 1971–1989 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kann, M. et al. Genome-wide analysis of Wilms’ tumor 1-controlled gene expression in podocytes reveals key regulatory mechanisms. J. Am. Soc. Nephrol. 26, 2097–2104 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Talyan, S. et al. CALINCA — a novel pipeline for the identification of lncRNAs in podocyte disease. Cells 10, 692 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. et al. Global transcriptomic changes occur in aged mouse podocytes. Kidney Int. 98, 1160–1173 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ettou, S. et al. Epigenetic transcriptional reprogramming by WT1 mediates a repair response during podocyte injury. Sci. Adv. 6, eabb5460 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, J.-K. et al. WT1 is a key regulator of podocyte function: reduced expression levels cause crescentic glomerulonephritis and mesangial sclerosis. Hum. Mol. Genet. 11, 651–659 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Palmer, A. K. et al. Targeting senescent cells alleviates obesity-induced metabolic dysfunction. Aging Cell 18, e12950 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shankland, S. J. et al. Podocyte aging: why and how getting old matters. J. Am. Soc. Nephrol. 32, 2697–2713 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh, A. et al. Hippo signaling mediators Yap and Taz are required in the epicardium for coronary vasculature development. Cell Rep. 15, 1384–1393 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, S. I. et al. TGF-β-activated kinase 1 is crucial in podocyte differentiation and glomerular capillary formation. J. Am. Soc. Nephrol. 25, 1966–1978 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamatani, H. et al. TGF-β1 alters DNA methylation levels in promoter and enhancer regions of the WT1 gene in human podocytes. Nephrology 24, 575–584 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, L. et al. Mutual antagonism of Wilms’ tumor 1 and β-catenin dictates podocyte health and disease. J. Am. Soc. Nephrol. 26, 677–691 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dehbi, M., Hiscott, J. & Pelletier, J. Activation of the wt1 Wilms’ tumor suppressor gene by NF-κB. Oncogene 16, 2033–2039 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arellano-Rodríguez, M. et al. The inflammatory process modulates the expression and localization of WT1 in podocytes leading to kidney damage. In Vivo 35, 3137–3146 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, D., Li, Y., Wu, C. & Liu, Y. PINCH1 is transcriptional regulator in podocytes that interacts with WT1 and represses podocalyxin expression. PLoS ONE 6, e17048 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, S.-Y. et al. CMIP interacts with WT1 and targets it on the proteasome degradation pathway. Clin. Transl. Med. 11, e460 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rico, M. et al. WT1-interacting protein and ZO-1 translocate into podocyte nuclei after puromycin aminonucleoside treatment. Am. J. Physiol. Renal Physiol. 289, F431–F441 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gebeshuber, C. A. et al. Focal segmental glomerulosclerosis is induced by microRNA-193a and its downregulation of WT1. Nat. Med. 19, 481–487 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Q., Ge, X., Zhang, J. & Chen, L. Effect of lncRNA WT1-AS regulating WT1 on oxidative stress injury and apoptosis of neurons in Alzheimer’s disease via inhibition of the miR-375/SIX4 axis. Aging 12, 23974–23995 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma, P. M., Bowman, M., Madden, S. L., Rauscher, F. J. III & Sukumar, S. RNA editing in the Wilms’ tumor susceptibility gene, WT1. Genes. Dev. 8, 720–731 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kolch, W., Halasz, M., Granovskaya, M. & Kholodenko, B. N. The dynamic control of signal transduction networks in cancer cells. Nat. Rev. Cancer 15, 515–527 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, G. Y. & Sabatini, D. M. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 21, 183–203 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huynh, C., Ryu, J., Lee, J., Inoki, A. & Inoki, K. Nutrient-sensing mTORC1 and AMPK pathways in chronic kidney diseases. Nat. Rev. Nephrol. 19, 102–122 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koehler, F. C., Späth, M. R., Hoyer-Allo, K. J. R. & Müller, R.-U. Mechanisms of caloric restriction-mediated stress-resistance in acute kidney injury. Nephron 146, 234–238 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mitchell, J. R. et al. Short-term dietary restriction and fasting precondition against ischemia reperfusion injury in mice. Aging Cell 9, 40–53 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Späth, M. R. et al. Preconditioning strategies to prevent acute kidney injury. F1000Res. 9, 237 (2020).

    Article 

    Google Scholar
     

  • Xie, R. et al. Identifying progression related disease risk modules based on the human subcellular signaling networks. Mol. Biosyst. 10, 3298–3309 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Irish, J. M. et al. B-cell signaling networks reveal a negative prognostic human lymphoma cell subset that emerges during tumor progression. Proc. Natl Acad. Sci. USA 107, 12747–12754 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tognetti, M. et al. Deciphering the signaling network of breast cancer improves drug sensitivity prediction. Cell Syst. 12, 401–418.e12 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saez-Rodriguez, J. & Blüthgen, N. Personalized signaling models for personalized treatments. Mol. Syst. Biol. 16, e9042 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 51, D587–D592 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gillespie, M. et al. The reactome pathway knowledgebase 2022. Nucleic Acids Res. 50, D687–D692 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garcia-Alonso, L. et al. Single-cell roadmap of human gonadal development. Nature 607, 540–547 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin, S. et al. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 12, 1088 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Türei, D. et al. Integrated intra- and intercellular signaling knowledge for multicellular omics analysis. Mol. Syst. Biol. 17, e9923 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garrido-Rodriguez, M., Zirngibl, K., Ivanova, O., Lobentanzer, S. & Saez-Rodriguez, J. Integrating knowledge and omics to decipher mechanisms via large-scale models of signaling networks. Mol. Syst. Biol. 18, e11036 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piehl, N. et al. Cerebrospinal fluid immune dysregulation during healthy brain aging and cognitive impairment. Cell 185, 5028–5039.e13 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Billmann, M., Chaudhary, V., ElMaghraby, M. F., Fischer, B. & Boutros, M. Widespread rewiring of genetic networks upon cancer signaling pathway activation. Cell Syst. 6, 52–64.e4 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanchez-Vega, F. et al. Oncogenic signaling pathways in the cancer genome atlas. Cell 173, 321–337.e10 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Downward, J. Targeting RAS signalling pathways in cancer therapy. Nat. Rev. Cancer 3, 11–22 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schubbert, S., Shannon, K. & Bollag, G. Hyperactive Ras in developmental disorders and cancer. Nat. Rev. Cancer 7, 295–308 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Menezes, L. F. & Germino, G. G. The pathobiology of polycystic kidney disease from a metabolic viewpoint. Nat. Rev. Nephrol. 15, 735–749 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Zhou, X. & Torres, V. E. Emerging therapies for autosomal dominant polycystic kidney disease with a focus on cAMP signaling. Front. Mol. Biosci. 9, 981963 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baghdadi, M., Hinterding, H. M., Partridge, L. & Deelen, J. From mutation to mechanism: deciphering the molecular function of genetic variants linked to human ageing. Brief. Funct. Genomics 21, 13–23 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Fraser, H. C. et al. Biological mechanisms of aging predict age-related disease co-occurrence in patients. Aging Cell 21, e13524 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gallagher, M. D. & Chen-Plotkin, A. S. The post-GWAS era: from association to function. Am. J. Hum. Genet. 102, 717–730 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson, J. R. et al. Global post-translational modification profiling of HIV-1-infected cells reveals mechanisms of host cellular pathway remodeling. Cell Rep. 39, 110690 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Skowronek, P. et al. Rapid and in-depth coverage of the (phospho-)proteome with deep libraries and optimal window design for dia-PASEF. Mol. Cell. Proteom. 21, 100279 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Rinschen, M. M. & Saez-Rodriguez, J. The tissue proteome in the multi-omic landscape of kidney disease. Nat. Rev. Nephrol. 17, 205–219 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gatto, L. et al. Initial recommendations for performing, benchmarking and reporting single-cell proteomics experiments. Nat. Methods 20, 375–386 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szalai, B. & Saez-Rodriguez, J. Why do pathway methods work better than they should? FEBS Lett. 594, 4189–4200 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Birrell, G. W. et al. Transcriptional response of Saccharomyces cerevisiae to DNA-damaging agents does not identify the genes that protect against these agents. Proc. Natl Acad. Sci. USA 99, 8778–8783 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Begley, T. J., Rosenbach, A. S., Ideker, T. & Samson, L. D. Damage recovery pathways in Saccharomyces cerevisiae revealed by genomic phenotyping and interactome mapping. Mol. Cancer Res. 1, 103–112 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Workman, C. T. et al. A systems approach to mapping DNA damage response pathways. Science 312, 1054–1059 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schacht, T., Oswald, M., Eils, R., Eichmüller, S. B. & König, R. Estimating the activity of transcription factors by the effect on their target genes. Bioinformatics 30, i401–i407 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, E. & Bussemaker, H. J. Identifying the genetic determinants of transcription factor activity. Mol. Syst. Biol. 6, 412 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, J. et al. Super-enhancer-associated transcription factors maintain transcriptional regulation in mature podocytes. J. Am. Soc. Nephrol. 32, 1323–1337 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lackner, A. et al. Cooperative genetic networks drive embryonic stem cell transition from naïve to formative pluripotency. EMBO J. 40, e105776 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garcia-Alonso, L., Holland, C. H., Ibrahim, M. M., Turei, D. & Saez-Rodriguez, J. Benchmark and integration of resources for the estimation of human transcription factor activities. Genome Res. 29, 1363–1375 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keenan, A. B. et al. ChEA3: transcription factor enrichment analysis by orthogonal omics integration. Nucleic Acids Res. 47, W212–W224 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Z.-P., Wu, C., Miao, H. & Wu, H. RegNetwork: an integrated database of transcriptional and post-transcriptional regulatory networks in human and mouse. Database 2015, bav095 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schubert, M. et al. Perturbation-response genes reveal signaling footprints in cancer gene expression. Nat. Commun. 9, 20 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holland, C. H. et al. Robustness and applicability of transcription factor and pathway analysis tools on single-cell RNA-seq data. Genome Biol. 21, 36 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuppe, C. et al. Decoding myofibroblast origins in human kidney fibrosis. Nature 589, 281–286 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weidemüller, P., Kholmatov, M., Petsalaki, E. & Zaugg, J. B. Transcription factors: bridge between cell signaling and gene regulation. Proteomics 21, e2000034 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Wilkinson, A. C., Nakauchi, H. & Göttgens, B. Mammalian transcription factor networks: recent advances in interrogating biological complexity. Cell Syst. 5, 319–331 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kann, M. et al. WT1 targets Gas1 to maintain nephron progenitor cells by modulating FGF signals. Development 142, 1254–1266 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neph, S. et al. Circuitry and dynamics of human transcription factor regulatory networks. Cell 150, 1274–1286 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bar-Joseph, Z. et al. Computational discovery of gene modules and regulatory networks. Nat. Biotechnol. 21, 1337–1342 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Badia-I-Mompel, P. et al. Gene regulatory network inference in the era of single-cell multi-omics. Nat. Rev. Genet. 24, 739–754 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Banerji, J., Rusconi, S. & Schaffner, W. Expression of a β-globin gene is enhanced by remote SV40 DNA sequences. Cell 27, 299–308 (1981).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fulco, C. P. et al. Activity-by-contact model of enhancer-promoter regulation from thousands of CRISPR perturbations. Nat. Genet. 51, 1664–1669 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allocco, D. J., Kohane, I. S. & Butte, A. J. Quantifying the relationship between co-expression, co-regulation and gene function. BMC Bioinforma. 5, 18 (2004).

    Article 

    Google Scholar
     

  • Gao, F., Foat, B. C. & Bussemaker, H. J. Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data. BMC Bioinforma. 5, 31 (2004).

    Article 

    Google Scholar
     

  • Bulyk, M. L. Computational prediction of transcription-factor binding site locations. Genome Biol. 5, 201 (2003).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beyer, A. et al. Integrated assessment and prediction of transcription factor binding. PLoS Comput. Biol. 2, e70 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taverner, N. V., Smith, J. C. & Wardle, F. C. Identifying transcriptional targets. Genome Biol. 5, 210 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Redestig, H., Weicht, D., Selbig, J. & Hannah, M. A. Transcription factor target prediction using multiple short expression time series from Arabidopsis thaliana. BMC Bioinforma. 8, 454 (2007).

    Article 

    Google Scholar
     

  • Gupta, A. et al. Inferring gene regulation from stochastic transcriptional variation across single cells at steady state. Proc. Natl Acad. Sci. USA 119, e2207392119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, B. & Tan, K. Understanding transcriptional regulatory networks using computational models. Curr. Opin. Genet. Dev. 37, 101–108 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duren, Z., Chen, X., Jiang, R., Wang, Y. & Wong, W. H. Modeling gene regulation from paired expression and chromatin accessibility data. Proc. Natl Acad. Sci. USA 114, E4914–E4923 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kleino, I., Frolovaitė, P., Suomi, T. & Elo, L. L. Computational solutions for spatial transcriptomics. Comput. Struct. Biotechnol. J. 20, 4870–4884 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wagner, J. et al. Medin co-aggregates with vascular amyloid-β in Alzheimer’s disease. Nature 612, 123–131 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramachandran, P. et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 575, 512–518 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, S. et al. Single-cell transcriptomics reveals a mechanosensitive injury signaling pathway in early diabetic nephropathy. Genome Med. 15, 2 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balzer, M. S. et al. Single-cell analysis highlights differences in druggable pathways underlying adaptive or fibrotic kidney regeneration. Nat. Commun. 13, 4018 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duren, Z. et al. Regulatory analysis of single cell multiome gene expression and chromatin accessibility data with scREG. Genome Biol. 23, 114 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bravo González-Blas, C. et al. SCENIC+: single-cell multiomic inference of enhancers and gene regulatory networks. Nat. Methods 20, 1355–1367 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muto, Y. et al. Single cell transcriptional and chromatin accessibility profiling redefine cellular heterogeneity in the adult human kidney. Nat. Commun. 12, 2190 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miao, Z. et al. Single cell regulatory landscape of the mouse kidney highlights cellular differentiation programs and disease targets. Nat. Commun. 12, 2277 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Brown, Z. K., Van Nostrand, E. L., Higgins, J. P. & Kim, S. K. The inflammatory transcription factors NFκB, STAT1 and STAT3 drive age-associated transcriptional changes in the human kidney. PLoS Genet. 11, e1005734 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Dam, S., Võsa, U., van der Graaf, A., Franke, L. & de Magalhães, J. P. Gene co-expression analysis for functional classification and gene-disease predictions. Brief. Bioinform. 19, 575–592 (2018).

    PubMed 

    Google Scholar
     

  • Deelen, P. et al. Improving the diagnostic yield of exome-sequencing by predicting gene–phenotype associations using large-scale gene expression analysis. Nat. Commun. 10, 2837 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leote, A. C., Wu, X. & Beyer, A. Regulatory network-based imputation of dropouts in single-cell RNA sequencing data. PLoS Comput. Biol. 18, e1009849 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, T. I. et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 799–804 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van Roeyen, C. R. C. et al. Growth arrest-specific protein 1 is a novel endogenous inhibitor of glomerular cell activation and proliferation. Kidney Int. 83, 251–263 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Gennarino, V. A. et al. MicroRNA target prediction by expression analysis of host genes. Genome Res. 19, 481–490 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marco, A., Konikoff, C., Karr, T. L. & Kumar, S. Relationship between gene co-expression and sharing of transcription factor binding sites in Drosophila melanogaster. Bioinformatics 25, 2473–2477 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hinnebusch, A. G. & Natarajan, K. Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. Eukaryot. Cell 1, 22–32 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Komili, S. & Silver, P. A. Coupling and coordination in gene expression processes: a systems biology view. Nat. Rev. Genet. 9, 38–48 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y., Beyer, A. & Aebersold, R. On the dependency of cellular protein levels on mRNA abundance. Cell 165, 535–550 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Emmert-Streib, F. Influence of the experimental design of gene expression studies on the inference of gene regulatory networks: environmental factors. PeerJ 1, e10 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gross, T. & Blüthgen, N. Identifiability and experimental design in perturbation studies. Bioinformatics 36, i482–i489 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mombaerts, L., Aalto, A., Markdahl, J. & Gonçalves, J. A multifactorial evaluation framework for gene regulatory network reconstruction. IFAC-PapersOnLine 52, 262–268 (2019).

    Article 

    Google Scholar
     

  • Liu, S. et al. Weighted gene co-expression network analysis identifies FCER1G as a key gene associated with diabetic kidney disease. Ann. Transl. Med. 8, 1427 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Osuna-Martinez, U. et al. In silico prediction of hub genes involved in diabetic kidney and COVID-19 related disease by differential gene expression and interactome analysis. Genes 13, 2412 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harris, B. D., Crow, M., Fischer, S. & Gillis, J. Single-cell co-expression analysis reveals that transcriptional modules are shared across cell types in the brain. Cell Syst. 12, 748–756.e3 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J. & Zhang, S. in Encyclopedia of Systems Biology (eds Dubitzky, W., Wolkenhauer, O., Cho, K.-H. & Yokota, H.) 1437–1441 (Springer New York, 2013).

  • Møller, A. F. & Natarajan, K. N. Predicting gene regulatory networks from cell atlases. Life Sci. Alliance 3, e202000658 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cleary, B., Cong, L., Cheung, A., Lander, E. S. & Regev, A. Efficient generation of transcriptomic profiles by random composite measurements. Cell 171, 1424–1436.e18 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scarpulla, R. C., Vega, R. B. & Kelly, D. P. Transcriptional integration of mitochondrial biogenesis. Trends Endocrinol. Metab. 23, 459–466 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weith, M. et al. Genetic effects on molecular network states explain complex traits. Mol. Syst. Biol. 19, e11493 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suo, S. et al. Revealing the critical regulators of cell identity in the mouse cell atlas. Cell Rep. 25, 1436–1445.e3 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lotfollahi, M. et al. Predicting cellular responses to complex perturbations in high-throughput screens. Mol. Syst. Biol. 19, e11517 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roohani, Y., Huang, K. & Leskovec, J. Predicting transcriptional outcomes of novel multigene perturbations with GEARS. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01905-6 (2023).

  • Boulogne, F. et al. KidneyNetwork: using kidney-derived gene expression data to predict and prioritize novel genes involved in kidney disease. Eur. J. Hum. Genet. 31, 1300–1308 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mignone, P., Pio, G., D’Elia, D. & Ceci, M. Exploiting transfer learning for the reconstruction of the human gene regulatory network. Bioinformatics 36, 1553–1561 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuijjer, M. L., Tung, M. G., Yuan, G., Quackenbush, J. & Glass, K. Estimating sample-specific regulatory networks. iScience 14, 226–240 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coleman, L. A. et al. Personal network inference unveils heterogeneous immune response patterns to viral infection in children with acute wheezing. J. Pers. Med. 11, 1293 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reznik, E. & Sander, C. Extensive decoupling of metabolic genes in cancer. PLoS Comput. Biol. 11, e1004176 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kostka, D. & Spang, R. Finding disease specific alterations in the co-expression of genes. Bioinformatics 20, i194–i199 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de la Fuente, A. From ‘differential expression’ to ‘differential networking’ — identification of dysfunctional regulatory networks in diseases. Trends Genet. 26, 326–333 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Truong, T. T. et al. Co-expression networks unveiled long non-coding RNAs as molecular targets of drugs used to treat bipolar disorder. Front. Pharmacol. 13, 873271 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moerman, T. et al. GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks. Bioinformatics 35, 2159–2161 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Fritsch, C. et al. Genome-wide surveillance of transcription errors in response to genotoxic stress. Proc. Natl Acad. Sci. USA 118, e2004077118 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Debès, C. et al. Ageing-associated changes in transcriptional elongation influence longevity. Nature 616, 814–821 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heintz, C. et al. Splicing factor 1 modulates dietary restriction and TORC1 pathway longevity in C. elegans. Nature 541, 102–106 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bahar, R. et al. Increased cell-to-cell variation in gene expression in ageing mouse heart. Nature 441, 1011–1014 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gyenis, A. et al. Genome-wide RNA polymerase stalling shapes the transcriptome during aging. Nat. Genet. 55, 268–279 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Papadakis, A. et al. Age-associated transcriptional stress due to accelerated elongation and increased stalling of RNAPII. Nat. Genet. 55, 2011–2012 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Angelidis, I. et al. An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics. Nat. Commun. 10, 1–17 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ibañez-Solé, O., Ascensión, A. M., Araúzo-Bravo, M. J. & Izeta, A. Lack of evidence for increased transcriptional noise in aged tissues. Elife 11, e80380 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lake, B. B. et al. An atlas of healthy and injured cell states and niches in the human kidney. Nature 619, 585–594 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bravo González-Blas, C. et al. Identification of genomic enhancers through spatial integration of single-cell transcriptomics and epigenomics. Mol. Syst. Biol. 16, e9438 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Williams, G. C. Pleiotropy, natural selection, and the evolution of senescence. Evolution 11, 398 (1957).

    Article 

    Google Scholar
     

  • Bochdanovits, Z. & de Jong, G. Antagonistic pleiotropy for life-history traits at the gene expression level. Proc. Biol. Sci. 271, S75–S78 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Long, E. & Zhang, J. Evidence for the role of selection for reproductively advantageous alleles in human aging. Sci. Adv. 9, eadh4990 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J. Patterns and evolutionary consequences of pleiotropy. Annu. Rev. Ecol. Evol. Syst. 54, 1–19 (2023).

    Article 

    Google Scholar
     

  • Huynh-Thu, V. A. & Sanguinetti, G. in Gene Regulatory Networks: Methods and Protocols (eds Sanguinetti, G. & Huynh-Thu, V. A.) 1–23 (Springer New York, 2019).

  • Beyer, A., Bandyopadhyay, S. & Ideker, T. Integrating physical and genetic maps: from genomes to interaction networks. Nat. Rev. Genet. 8, 699–710 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma. 9, 559 (2008).

    Article 

    Google Scholar
     

  • Margolin, A. A. et al. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinforma. 7, S7 (2006).

    Article 

    Google Scholar
     

  • Meyer, P. E., Kontos, K., Lafitte, F. & Bontempi, G. Information-theoretic inference of large transcriptional regulatory networks. EURASIP J. Bioinform. Syst. Biol. 2007, 79879 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haury, A.-C., Mordelet, F., Vera-Licona, P. & Vert, J.-P. TIGRESS: trustful inference of gene regulation using stability selection. BMC Syst. Biol. 6, 145 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hill, S. M. et al. Inferring causal molecular networks: empirical assessment through a community-based effort. Nat. Methods 13, 310–318 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huynh-Thu, V. A., Irrthum, A., Wehenkel, L. & Geurts, P. Inferring regulatory networks from expression data using tree-based methods. PLoS ONE 5, e12776 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Friedman, N., Linial, M., Nachman, I. & Pe’er, D. Using Bayesian networks to analyze expression data. J. Comput. Biol. 7, 601–620 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huntington-Klein, N. The Effect: An Introduction to Research Design and Causality (Chapman and Hall/CRC Press, 2021).

  • Pearl, J. Causality (Cambridge Univ. Press, 2009).

  • Kalisch, M., Mächler, M., Colombo, D., Maathuis, M. H. & Bühlmann, P. Causal inference using graphical models with the R package pcalg. J. Stat. Softw. 47, 1–26 (2012).

    Article 

    Google Scholar
     

  • Squires, C. & Uhler, C. Causal structure learning: a combinatorial perspective. Found. Comut. Math. 1, 1–35 (2022).


    Google Scholar
     

  • Heinze-Deml, C., Maathuis, M. H. & Meinshausen, N. Causal structure learning. Annu. Rev. Stat. Appl. 5, 371–391 (2018).

    Article 

    Google Scholar
     

  • Triantafillou, S. et al. Predicting causal relationships from biological data: applying automated causal discovery on mass cytometry data of human immune cells. Sci. Rep. 7, 12724 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, H., Li, Z. & Vetta, A. R. in Advances in Neural Information Processing Systems (eds Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N. & Weinberger, K. Q.). 27 (Curran Associates, 2014).

  • Auwerx, C. et al. Exploiting the mediating role of the metabolome to unravel transcript-to-phenotype associations. Elife 12, e81097 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shojaie, A. & Michailidis, G. Discovering graphical Granger causality using the truncating lasso penalty. Bioinformatics 26, i517–i523 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hill, S. M. et al. Context specificity in causal signaling networks revealed by phosphoprotein profiling. Cell Syst. 4, 73–83.e10 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, J. et al. Causal network inference from gene transcriptional time-series response to glucocorticoids. PLoS Comput. Biol. 17, e1008223 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aalto, A., Viitasaari, L., Ilmonen, P., Mombaerts, L. & Gonçalves, J. Gene regulatory network inference from sparsely sampled noisy data. Nat. Commun. 11, 3493 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meinshausen, N. et al. Methods for causal inference from gene perturbation experiments and validation. Proc. Natl Acad. Sci. USA 113, 7361–7368 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dixit, A. et al. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866.e17 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, B., de la Fuente, A. & Hoeschele, I. Gene network inference via structural equation modeling in genetical genomics experiments. Genetics 178, 1763–1776 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aygün, N. et al. Inferring cell-type-specific causal gene regulatory networks during human neurogenesis. Genome Biol. 24, 130 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lecca, P. Machine learning for causal inference in biological networks: perspectives of this challenge. Front. Bioinform 1, 746712 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar