Search
Search
Close this search box.

Exploring the relations of NLR, hsCRP and MCP-1 with type 2 diabetic kidney disease: a cross-sectional study – Scientific Reports

  • Wang, L. et al. Prevalence and treatment of diabetes in China, 2013–2018[J]. JAMA 326(24), 2498–2506 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, H. et al. IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J]. Diabetes Res. Clin. Pract. 183, 109119 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Ccorahua-Rios, M. S. et al. Type 2 diabetes mellitus prevalence between 2005 and 2018 in population under 30 using data from the Ministry of Health of Peru[J]. Medwave 19(10), e7723 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Tuttle, K. R. et al. Diabetic kidney disease: A report from an ADA Consensus Conference[J]. Diabetes Care 37(10), 2864–2883 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, C. et al. CKD in China: Evolving spectrum and public health implications[J]. Am. J. Kidney Dis. 76(2), 258–264 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, M. et al. Incidence and time trends of type 2 diabetes mellitus among adults in Zhejiang Province, China, 2007–2017[J]. J. Diabetes Res. 2020, 2597953 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luk, A. et al. Secular trends in incidence of type 1 and type 2 diabetes in Hong Kong: A retrospective cohort study[J]. PLoS Med. 17(2), e1003052 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, L. et al. Trends in chronic kidney disease in China[J]. N. Engl. J. Med. 375(9), 905–906 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Lytvyn, Y. et al. The new biology of diabetic kidney disease-mechanisms and therapeutic implications[J]. Endocr. Rev. 41(2), 202–231 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Matoba, K., Takeda, Y., Nagai, Y., et al. Unraveling the role of inflammation in the pathogenesis of diabetic kidney disease.
    Int. J. Mol. Sci. 20(14), 3393 (2019).

    CAS 

    Google Scholar
     

  • Winter, L. et al. Use of readily accessible inflammatory markers to predict diabetic kidney disease[J]. Front. Endocrinol. (Lausanne) 9, 225 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Song, M. et al. Neutrophil-to-lymphocyte ratio and mortality in the United States general population[J]. Sci. Rep. 11(1), 464 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vorobjeva, N. V. & Chernyak, B. V. NETosis: Molecular mechanisms, role in physiology and pathology[J]. Biochemistry (Mosc) 85(10), 1178–1190 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Azab, B. et al. Usefulness of neutrophil to lymphocyte ratio in predicting short- and long-term mortality after non-ST-elevation myocardial infarction[J]. Am. J. Cardiol. 106(4), 470–476 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Afari, M. E. & Bhat, T. Neutrophil to lymphocyte ratio (NLR) and cardiovascular diseases: An update[J]. Expert Rev. Cardiovasc. Ther. 14(5), 573–577 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buonacera, A., Stancanelli, B., Colaci, M. et al. Neutrophil to lymphocyte ratio: An emerging marker of the relationships between the immune system and diseases. Int. J. Mol. Sci. 23(7), 3636 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, Y. et al. C-reactive protein and ageing[J]. Clin. Exp. Pharmacol. Physiol. 44(Suppl 1), 9–14 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aryan, Z. et al. Baseline high-sensitivity c-reactive protein predicts macrovascular and microvascular complications of type 2 diabetes: A population-based study[J]. Ann. Nutr. Metab. 72(4), 287–295 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sproston, N. R. & Ashworth, J. J. Role of C-reactive protein at sites of inflammation and infection[J]. Front. Immunol. 9, 754 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chow, F. Y. et al. Macrophages in streptozotocin-induced diabetic nephropathy: Potential role in renal fibrosis[J]. Nephrol. Dial Transpl. 19(12), 2987–2996 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Q. et al. Monocyte chemoattractant protein-1 (MCP-1) regulates macrophage cytotoxicity in abdominal aortic aneurysm[J]. PLoS One 9(3), e92053 (2014).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Yan, Q. et al. Expression and significance of RANTES and MCP-1 in renal tissue with chronic renal allograft dysfunction[J]. Transpl. Proc. 48(6), 2034–2039 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Hao, W., Rovin, B. H. & Friedman, A. Mathematical model of renal interstitial fibrosis[J]. Proc. Natl. Acad. Sci. USA 111(39), 14193–14198 (2014).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Levey, A. S. et al. A new equation to estimate glomerular filtration rate[J]. Ann. Intern. Med. 150(9), 604–612 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jaaban, M. et al. Neutrophil-lymphocyte ratio and platelet-lymphocyte ratio as novel risk markers for diabetic nephropathy in patients with type 2 diabetes[J]. Heliyon 7(7), e7564 (2021).

    Article 

    Google Scholar
     

  • Huang, W. et al. Neutrophil-lymphocyte ratio is a reliable predictive marker for early-stage diabetic nephropathy[J]. Clin. Endocrinol. (Oxf.) 82(2), 229–233 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wan, H. et al. Associations between the neutrophil-to-lymphocyte ratio and diabetic complications in adults with diabetes: A cross-sectional study[J]. J. Diabetes Res. 2020, 6219545 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Azab, B. et al. Neutrophil-to-lymphocyte ratio as a predictor of worsening renal function in diabetic patients (3-year follow-up study)[J]. Ren. Fail 34(5), 571–576 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, J. et al. Effects of neutrophil-lymphocyte ratio on renal function and histologic lesions in patients with diabetic nephropathy[J]. Nephrology (Carlton) 24(11), 1115–1121 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang, M. et al. Association between high-sensitivity c-reactive protein and diabetic kidney disease in patients with type 2 diabetes mellitus[J]. Front. Endocrinol. (Lausanne) 13, 885516 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, Q. et al. The association between high-sensitivity C-reactive protein concentration and diabetic nephropathy: A meta-analysis[J]. Eur. Rev. Med. Pharmacol. Sci. 19(23), 4558–4568 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Liu, L. et al. Reduction in serum high-sensitivity C-reactive protein favors kidney outcomes in patients with impaired fasting glucose or diabetes[J]. J. Diabetes Res. 2020, 2720905 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, S. et al. The association of erythrocyte sedimentation rate, high-sensitivity C-reactive protein and diabetic kidney disease in patients with type 2 diabetes[J]. BMC Endocr. Disord. 20(1), 103 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Satirapoj, B. et al. Urinary epidermal growth factor, monocyte chemoattractant protein-1 or their ratio as predictors for rapid loss of renal function in type 2 diabetic patients with diabetic kidney disease[J]. BMC Nephrol. 19(1), 246 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shoukry, A., Bdeer, S. & El-Sokkary, R. H. Urinary monocyte chemoattractant protein-1 and vitamin D-binding protein as biomarkers for early detection of diabetic nephropathy in type 2 diabetes mellitus[J]. Mol. Cell Biochem. 408(1–2), 25–35 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shaker, O. G. & Sadik, N. A. Transforming growth factor beta 1 and monocyte chemoattractant protein-1 as prognostic markers of diabetic nephropathy[J]. Hum. Exp. Toxicol. 32(10), 1089–1096 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scurt, F. G. et al. Monocyte chemoattractant protein-1 predicts the development of diabetic nephropathy[J]. Diabetes Metab. Res. Rev. 38(2), e3497 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alicic, R. Z., Rooney, M. T. & Tuttle, K. R. Diabetic kidney disease: Challenges, progress, and possibilities[J]. Clin. J. Am. Soc. Nephrol. 12(12), 2032–2045 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McGill, J. B. Improving microvascular outcomes in patients with diabetes through management of hypertension[J]. Postgrad. Med. 121(2), 89–101 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Corriere, T. et al. Neutrophil-to-Lymphocyte Ratio is a strong predictor of atherosclerotic carotid plaques in older adults[J]. Nutr. Metab. Cardiovasc. Dis. 28(1), 23–27 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar