Search
Search
Close this search box.

Epithelial cell states associated with kidney and allograft injury – Nature Reviews Nephrology

  • Abecassis, M. et al. Kidney transplantation as primary therapy for end-stage renal disease: a National Kidney Foundation/Kidney Disease Outcomes Quality Initiative (NKF/KDOQITM) conference. Clin. J. Am. Soc. Nephrol. 3, 471–480 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lentine, K. L. et al. OPTN/SRTR 2021 annual data report: kidney. Am. J. Transpl. 23, S21–S120 (2023).

    Article 

    Google Scholar
     

  • Halloran, P. F., Famulski, K. S. & Reeve, J. Molecular assessment of disease states in kidney transplant biopsy samples. Nat. Rev. Nephrol. 12, 534–548 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Madill-Thomsen, K. S. et al. Relating molecular T cell-mediated rejection activity in kidney transplant biopsies to time and to histologic tubulitis and atrophy-fibrosis. Transplantation 107, 1102–1114 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Halloran, P. F. et al. Review: the transcripts associated with organ allograft rejection. Am. J. Transpl. 18, 785–795 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y. et al. Single-cell analysis reveals immune landscape in kidneys of patients with chronic transplant rejection. Theranostics 10, 8851–8862 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malone, A. F. et al. Harnessing expressed single nucleotide variation and single cell RNA sequencing to define immune cell chimerism in the rejecting kidney transplant. J. Am. Soc. Nephrol. 31, 1977–1986 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rashmi, P. et al. Multiplexed droplet single-cell sequencing (Mux-Seq) of normal and transplant kidney. Am. J. Transpl. 22, 876–885 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wu, H. et al. Single-cell transcriptomics of a human kidney allograft biopsy specimen defines a diverse inflammatory response. J. Am. Soc. Nephrol. 29, 2069–2080 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McDaniels, J. M. et al. Single nuclei transcriptomics delineates complex immune and kidney cell interactions contributing to kidney allograft fibrosis. Kidney Int. 103, 1077–1092 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suryawanshi, H. et al. Detection of infiltrating fibroblasts by single-cell transcriptomics in human kidney allografts. PLoS ONE 17, e0267704 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kellum, J. A. & Lameire, N. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). Crit. Care 17, 204 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoste, E. A. J. et al. Global epidemiology and outcomes of acute kidney injury. Nat. Rev. Nephrol. 14, 607–625 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vijayan, A. Tackling AKI: prevention, timing of dialysis and follow-up. Nat. Rev. Nephrol. 17, 87–88 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ronco, C. Acute kidney injury: from clinical to molecular diagnosis. Crit. Care 20, 201 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kane-Gill, S. L. et al. Risk factors for acute kidney injury in older adults with critical illness: a retrospective cohort study. Am. J. Kidney Dis. 65, 860–869 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Coca, S. G., Yusuf, B., Shlipak, M. G., Garg, A. X. & Parikh, C. R. Long-term risk of mortality and other adverse outcomes after acute kidney injury: a systematic review and meta-analysis. Am. J. Kidney Dis. 53, 961–973 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Newsome, B. B. et al. Long-term risk of mortality and end-stage renal disease among the elderly after small increases in serum creatinine level during hospitalization for acute myocardial infarction. Arch. Intern. Med. 168, 609–616 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abdala, P. M., Swanson, E. A. & Hutchens, M. P. Meta-analysis of AKI to CKD transition in perioperative patients. Perioper. Med. 10, 24 (2021).

    Article 

    Google Scholar
     

  • Guzzi, F., Cirillo, L., Roperto, R. M., Romagnani, P. & Lazzeri, E. Molecular mechanisms of the acute kidney injury to chronic kidney disease transition: an updated view. Int. J. Mol. Sci. 20, 4941 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fogo, A. B., Lusco, M. A., Najafian, B. & Alpers, C. E. AJKD atlas of renal pathology: ischemic acute tubular injury. Am. J. Kidney Dis. 67, e25 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Fogo, A. B., Lusco, M. A., Najafian, B. & Alpers, C. E. AJKD atlas of renal pathology: toxic acute tubular injury. Am. J. Kidney Dis. 67, e31–e32 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, J. et al. Molecular characterization of the transition from acute to chronic kidney injury following ischemia/reperfusion. JCI Insight 2, e94716 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cippa, P. E. & McMahon, A. P. Proximal tubule responses to injury: interrogation by single-cell transcriptomics. Curr. Opin. Nephrol. Hypertens. 32, 352–358 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, K. et al. Unique transcriptional programs identify subtypes of AKI. J. Am. Soc. Nephrol. 28, 1729–1740 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vigolo, E. et al. Canonical BMP signaling in tubular cells mediates recovery after acute kidney injury. Kidney Int. 95, 108–122 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marko, L. et al. Tubular epithelial NF-κB activity regulates ischemic AKI. J. Am. Soc. Nephrol. 27, 2658–2669 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Supavekin, S. et al. Differential gene expression following early renal ischemia/reperfusion. Kidney Int. 63, 1714–1724 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuen, P. S., Jo, S. K., Holly, M. K., Hu, X. & Star, R. A. Ischemic and nephrotoxic acute renal failure are distinguished by their broad transcriptomic responses. Physiol. Genomics 25, 375–386 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoshida, T. et al. Monitoring changes in gene expression in renal ischemia-reperfusion in the rat. Kidney Int. 61, 1646–1654 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Humphreys, B. D. et al. Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell 2, 284–291 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gerhardt, L. M. S. & McMahon, A. P. Identifying common molecular mechanisms in experimental and human acute kidney injury. Semin. Nephrol. 42, 151286 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang-Panesso, M. & Humphreys, B. D. Cellular plasticity in kidney injury and repair. Nat. Rev. Nephrol. 13, 39–46 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang-Panesso, M. et al. FOXM1 drives proximal tubule proliferation during repair from acute ischemic kidney injury. J. Clin. Invest. 129, 5501–5517 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Humphreys, B. D. Kidney injury, stem cells and regeneration. Curr. Opin. Nephrol. Hypertens. 23, 25–31 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lindgren, D. et al. Isolation and characterization of progenitor-like cells from human renal proximal tubules. Am. J. Pathol. 178, 828–837 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Angelotti, M. L. et al. Characterization of renal progenitors committed toward tubular lineage and their regenerative potential in renal tubular injury. Stem Cell 30, 1714–1725 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Loverre, A. et al. Increase of proliferating renal progenitor cells in acute tubular necrosis underlying delayed graft function. Transplantation 85, 1112–1119 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Peired, A. J. et al. Acute kidney injury promotes development of papillary renal cell adenoma and carcinoma from renal progenitor cells. Sci. Transl. Med. 12, eaaw6003 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scholz, H. et al. Kidney physiology and susceptibility to acute kidney injury: implications for renoprotection. Nat. Rev. Nephrol. 17, 335–349 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen, T. H. et al. Snapshots of nascent RNA reveal cell- and stimulus-specific responses to acute kidney injury. JCI Insight 7, e146374 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, J. et al. Cell-specific translational profiling in acute kidney injury. J. Clin. Invest. 124, 1242–1254 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doyle, J. P. et al. Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135, 749–762 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heiman, M. et al. A translational profiling approach for the molecular characterization of CNS cell types. Cell 135, 738–748 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kirita, Y., Wu, H., Uchimura, K., Wilson, P. C. & Humphreys, B. D. Cell profiling of mouse acute kidney injury reveals conserved cellular responses to injury. Proc. Natl Acad. Sci. USA 117, 15874–15883 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gerhardt, L. M. S. et al. Lineage tracing and single-nucleus multiomics reveal novel features of adaptive and maladaptive repair after acute kidney injury. J. Am. Soc. Nephrol. 34, 554–571 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dixon, E. E., Wu, H., Muto, Y., Wilson, P. C. & Humphreys, B. D. Spatially resolved transcriptomic analysis of acute kidney injury in a female murine model. J. Am. Soc. Nephrol. 33, 279–289 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hinze, C. et al. Single-cell transcriptomics reveals common epithelial response patterns in human acute kidney injury. Genome Med. 14, 103 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klocke, J. et al. Urinary single-cell sequencing captures kidney injury and repair processes in human acute kidney injury. Kidney Int. 102, 1359–1370 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rudman-Melnick, V. et al. Single-cell profiling of AKI in a murine model reveals novel transcriptional signatures, profibrotic phenotype, and epithelial-to-stromal crosstalk. J. Am. Soc. Nephrol. 31, 2793–2814 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balzer, M. S. et al. Single-cell analysis highlights differences in druggable pathways underlying adaptive or fibrotic kidney regeneration. Nat. Commun. 13, 4018 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Legouis, D. et al. Single cell profiling in COVID-19 associated acute kidney injury reveals patterns of tubule injury and repair in human. Preprint at bioRxiv https://doi.org/10.1101/2021.10.05.463150 (2021).

  • Jansen, J. et al. SARS-CoV-2 infects the human kidney and drives fibrosis in kidney organoids. Cell Stem Cell 29, 217–231.e8 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuppe, C. et al. Decoding myofibroblast origins in human kidney fibrosis. Nature 589, 281–286 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lake, B. B. et al. An atlas of healthy and injured cell states and niches in the human kidney. Nature 619, 585–594 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gerhardt, L. M. S., Liu, J., Koppitch, K., Cippa, P. E. & McMahon, A. P. Single-nuclear transcriptomics reveals diversity of proximal tubule cell states in a dynamic response to acute kidney injury. Proc. Natl Acad. Sci. USA 118, e2026684118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, L., Besschetnova, T. Y., Brooks, C. R., Shah, J. V. & Bonventre, J. V. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat. Med. 16, 535–543 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Friedmann Angeli, J. P. et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 16, 1180–1191 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ide, S. et al. Ferroptotic stress promotes the accumulation of pro-inflammatory proximal tubular cells in maladaptive renal repair. Elife 10, e68603 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Linkermann, A. et al. Synchronized renal tubular cell death involves ferroptosis. Proc. Natl Acad. Sci. USA 111, 16836–16841 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, Z. et al. XJB-5-131 inhibited ferroptosis in tubular epithelial cells after ischemia-reperfusion injury. Cell Death Dis. 11, 629 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H., Dixon, E. E., Wu, H. & Humphreys, B. D. Comprehensive single-cell transcriptional profiling defines shared and unique epithelial injury responses during kidney fibrosis. Cell Metab. 34, 1977–1998.e9 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Z. et al. Single-cell sequencing reveals homogeneity and heterogeneity of the cytopathological mechanisms in different etiology-induced AKI. Cell Death Dis. 14, 318 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. Cellular and molecular mechanisms of renal fibrosis. Nat. Rev. Nephrol. 7, 684–696 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Humphreys, B. D. Mechanisms of renal fibrosis. Annu. Rev. Physiol. 80, 309–326 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, L., Fu, H. & Liu, Y. The fibrogenic niche in kidney fibrosis: components and mechanisms. Nat. Rev. Nephrol. 18, 545–557 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tapmeier, T. T. et al. Pivotal role of CD4+ T cells in renal fibrosis following ureteric obstruction. Kidney Int. 78, 351–362 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anders, H. J. et al. A chemokine receptor CCR-1 antagonist reduces renal fibrosis after unilateral ureter ligation. J. Clin. Invest. 109, 251–259 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gewin, L. The many talents of transforming growth factor-β in the kidney. Curr. Opin. Nephrol. Hypertens. 28, 203–210 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Floege, J., Eitner, F. & Alpers, C. E. A new look at platelet-derived growth factor in renal disease. J. Am. Soc. Nephrol. 19, 12–23 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Livingston, M. J. et al. Tubular cells produce FGF2 via autophagy after acute kidney injury leading to fibroblast activation and renal fibrosis. Autophagy 19, 256–277 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, H. et al. Tenascin-C promotes acute kidney injury to chronic kidney disease progression by impairing tubular integrity via ɑvβ6 integrin signaling. Kidney Int. 97, 1017–1031 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abedini, A. et al. Spatially resolved human kidney multi-omics single cell atlas highlights the key role of the fibrotic microenvironment in kidney disease progression. Preprint at bioRxiv https://doi.org/10.1101/2022.10.24.513598 (2022).

  • Nagao, T. et al. Osteopontin plays a critical role in interstitial fibrosis but not glomerular sclerosis in diabetic nephropathy. Nephron Extra 2, 87–103 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sato, Y. & Yanagita, M. Resident fibroblasts in the kidney: a major driver of fibrosis and inflammation. Inflamm. Regen. 37, 17 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coca, S. G. Acute kidney injury in elderly persons. Am. J. Kidney Dis. 56, 122–131 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stevens, L. A., Viswanathan, G. & Weiner, D. E. Chronic kidney disease and end-stage renal disease in the elderly population: current prevalence, future projections, and clinical significance. Adv. Chronic Kidney Dis. 17, 293–301 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tonelli, M. et al. Systematic review: kidney transplantation compared with dialysis in clinically relevant outcomes. Am. J. Transpl. 11, 2093–2109 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Bastani, B. The present and future of transplant organ shortage: some potential remedies. J. Nephrol. 33, 277–288 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Ponticelli, C., Villa, M., Cesana, B., Montagnino, G. & Tarantino, A. Risk factors for late kidney allograft failure. Kidney Int. 62, 1848–1854 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Kwon, H. et al. Pure T-cell mediated rejection following kidney transplant according to response to treatment. PLoS ONE 16, e0256898 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kant, S., Dasgupta, A., Bagnasco, S. & Brennan, D. C. BK virus nephropathy in kidney transplantation: a state-of-the-art review. Viruses 14, 1616 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Requiao-Moura, L. R., Durão Junior, M. de S., Matos, A. C. & Pacheco-Silva, A. Ischemia and reperfusion injury in renal transplantation: hemodynamic and immunological paradigms. Einstein 13, 129–135 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mbianda, C., El-Meanawy, A. & Sorokin, A. Mechanisms of BK virus infection of renal cells and therapeutic implications. J. Clin. Virol. 71, 59–62 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Halloran, P. F. et al. Molecular diagnosis of ABMR with or without donor-specific antibody in kidney transplant biopsies: differences in timing and intensity but similar mechanisms and outcomes. Am. J. Transpl. 22, 1976–1991 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Cippa, P. E. et al. Transcriptional trajectories of human kidney injury progression. JCI Insight 3, e123151 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Famulski, K. S. et al. Molecular phenotypes of acute kidney injury in kidney transplants. J. Am. Soc. Nephrol. 23, 948–958 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Connell, P. J. et al. Biopsy transcriptome expression profiling to identify kidney transplants at risk of chronic injury: a multicentre, prospective study. Lancet 388, 983–993 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ke, B., Fan, C., Yang, L. & Fang, X. Matrix metalloproteinases-7 and kidney fibrosis. Front. Physiol. 8, 21 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nankivell, B. J. et al. The natural history of chronic allograft nephropathy. N. Engl. J. Med. 349, 2326–2333 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Loupy, A. et al. The Banff 2019 Kidney Meeting report (I): updates on and clarification of criteria for T cell- and antibody-mediated rejection. Am. J. Transpl. 20, 2318–2331 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Jeong, H. J. Diagnosis of renal transplant rejection: Banff classification and beyond. Kidney Res. Clin. Pract. 39, 17–31 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chandran, S. & Mannon, R. B. T cell-mediated rejection in kidney transplant recipients: the end(point) is also the beginning. Am. J. Transpl. 22, 683–684 (2022).

    Article 

    Google Scholar
     

  • Bohmig, G. A., Eskandary, F., Doberer, K. & Halloran, P. F. The therapeutic challenge of late antibody-mediated kidney allograft rejection. Transpl. Int. 32, 775–788 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Ho, J. et al. Effectiveness of T cell-mediated rejection therapy: a systematic review and meta-analysis. Am. J. Transpl. 22, 772–785 (2022).

    Article 

    Google Scholar
     

  • Townamchai, N. & Avihingsanon, Y. Updated management for antibody-mediated rejection: opportunity to prolong kidney allograft survival. Curr. Opin. Nephrol. Hypertens. 32, 13–19 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Einecke, G. et al. Factors associated with kidney graft survival in pure antibody-mediated rejection at the time of indication biopsy: importance of parenchymal injury but not disease activity. Am. J. Transpl. 21, 1391–1401 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Halloran, P. F. et al. Discovering novel injury features in kidney transplant biopsies associated with TCMR and donor aging. Am. J. Transpl. 21, 1725–1739 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Halloran, P. F. et al. Archetypal analysis of injury in kidney transplant biopsies identifies two classes of early AKI. Front. Med. 9, 817324 (2022).

    Article 

    Google Scholar
     

  • Lamarthee, B. et al. Transcriptional and spatial profiling of the kidney allograft unravels a central role for FcyRIII+ innate immune cells in rejection. Nat. Commun. 14, 4359 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. et al. Single-cell RNA-seq analysis identified kidney progenitor cells from human urine. Protein Cell 12, 305–312 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abedini, A. et al. Urinary single-cell profiling captures the cellular diversity of the kidney. J. Am. Soc. Nephrol. 32, 614–627 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Latt, K. Z. et al. Urine single-cell RNA sequencing in focal segmental glomerulosclerosis reveals inflammatory signatures. Kidney Int. Rep. 7, 289–304 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Cheung, M. D. et al. Single-cell RNA sequencing of urinary cells reveals distinct cellular diversity in COVID-19-associated AKI. Kidney360 3, 28–36 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Goerlich, N. et al. Kidney transplant monitoring by urinary flow cytometry: biomarker combination of T cells, renal tubular epithelial cells, and podocalyxin-positive cells detects rejection. Sci. Rep. 10, 796 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Galante, N. Z. et al. Noninvasive immune monitoring assessed by flow cytometry and real time RT-PCR in urine of renal transplantation recipients. Transpl. Immunol. 16, 73–80 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Doke, T. et al. Single-cell analysis identifies the interaction of altered renal tubules with basophils orchestrating kidney fibrosis. Nat. Immunol. 23, 947–959 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amor, C. et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature 583, 127–132 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mylonas, K. J. et al. Cellular senescence inhibits renal regeneration after injury in mice, with senolytic treatment promoting repair. Sci. Transl. Med. 13, eabb0203 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dhillon, P. et al. The nuclear receptor ESRRA protects from kidney disease by coupling metabolism and differentiation. Cell Metab. 33, 379–394.e8 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Taguchi, K. et al. Cyclin G1 induces maladaptive proximal tubule cell dedifferentiation and renal fibrosis through CDK5 activation. J. Clin. Invest. 132, e158096 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar