Search
Search
Close this search box.

Effect of cellular senescence on the response of human peritoneal mesothelial cells to TGF-β – Scientific Reports

  • López-Cabrera, M. Mesenchymal conversion of mesothelial cells is a key event in the pathophysiology of the peritoneum during peritoneal dialysis. Adv. Med. 2014, 473134 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aroeira, L. S. et al. Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients. J. Am. Soc. Nephrol. 18, 2004–2013 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kalluri, R. & Neilson, E. G. Epithelial-mesenchymal transition and its implications for fibrosis. J. Clin. Invest. 112, 1776–1784 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koopmans, T. & Rinkevich, Y. Mesothelial to mesenchyme transition as a major developmental and pathological player in trunk organs and their cavities. Commun. Biol. 1, 170 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sandoval, P. et al. Mesothelial-to-mesenchymal transition in the pathogenesis of post-surgical peritoneal adhesions. J. Pathol. 239, 48–59 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Demir, A. Y. et al. Proteome analysis of human mesothelial cells during epithelial to mesenchymal transitions induced by shed menstrual effluent. Proteomics 4, 2608–2623 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rynne-Vidal, A. et al. Mesothelial-to-mesenchymal transition as a possible therapeutic target in peritoneal metastasis of ovarian cancer. J. Pathol. 242, 140–151 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pascual-Antón, L. et al. Mesothelial-to-mesenchymal transition and exosomes in peritoneal metastasis of ovarian cancer. Int. J. Mol. Sci. 22, 11496 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pascual-Antón, L. et al. Targeting carcinoma-associated mesothelial cells with antibody–drug conjugates in ovarian carcinomatosis. J. Pathol. 261, 238–251 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Yáñez-Mó, M. et al. Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N. Engl. J. Med. 348, 403–413 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Moustakas, A. & Heldin, C. H. Induction of epithelial-mesenchymal transition by transforming growth factor β. Semin. Cancer Biol. 22, 446–454 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Strippoli, R. et al. Molecular Mechanisms underlying peritoneal EMT and fibrosis. Stem Cells Int. 2016, 3543678 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loureiro, J. et al. Blocking TGF-beta1 protects the peritoneal membrane from dialysate-induced damage. J. Am. Soc. Nephrol. 22, 1682–1695 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frangogiannis, N. G. Transforming growth factor–ß in tissue fibrosis. J. Exp. Med. 217, 1–16 (2020).

    Article 

    Google Scholar
     

  • Massagué, J. & Sheppard, D. TGF-β signaling in health and disease. Cell 186, 4007–4037 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tominaga, K. & Suzuki, H. I. TGF-β signaling in cellular senescence and aging-related pathology. Int. J. Mol. Sci. 20, 5002 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Debacq-Chainiaux, F. et al. Repeated exposure of human skin fibroblasts to UVB at subcytotoxic level triggers premature senescence through the TGF-β1 signaling pathway. J. Cell Sci. 118, 743–758 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Minagawa, S. et al. Accelerated epithelial cell senescence in IPF and the inhibitory role of SIRT6 in TGF-β-induced senescence of human bronchial epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 300, 391–401 (2011).

    Article 

    Google Scholar
     

  • Li, Z.-Y., Chen, Z.-L., Zhang, T., Wei, C. & Shi, W.-Y. Correction for: TGF-β and NF-κB signaling pathway crosstalk potentiates corneal epithelial senescence through an RNA stress response. Aging 13, 20853–20853 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Senturk, S. et al. Transforming growth factor-beta induces senescence in hepatocellular carcinoma cells and inhibits tumor growth. Hepatology https://doi.org/10.1002/hep.23769 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Burton, D. G. A. & Krizhanovsky, V. Physiological and pathological consequences of cellular senescence. Cell. Mol. Life Sci. 71, 4373–4386 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Di Micco, R., Krizhanovsky, V., Baker, D. & d’Adda di Fagagna, F. Cellular senescence in ageing: From mechanisms to therapeutic opportunities. Nat. Rev. Mol. Cell Biol. 22, 75–95 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: An expanding universe. Cell 186, 243–278 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, W., Hickson, L. T. J., Eirin, A., Kirkland, J. L. & Lerman, L. O. Cellular senescence: The good, the bad and the unknown. Nat. Rev. Nephrol. 18, 611–627 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khavinson, V., Linkova, N., Dyatlova, A., Kantemirova, R. & Kozlov, K. Senescence-associated secretory phenotype of cardiovascular system cells and inflammaging: Perspectives of peptide regulation. Cells 12, 106 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hao, X., Wang, C. & Zhang, R. Chromatin basis of the senescence-associated secretory phenotype. Trends Cell Biol. 32, 513–526 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coppe, J. P., Desprez, P. Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: The dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, S. & Sharpless, N. E. Senescence in health and disease. Cell 169, 1000–1011 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, S. M. et al. Network-based integrated analysis of omics data reveal novel players of TGF-β1-induced EMT in human peritoneal mesothelial cells. Sci. Rep. 9, 1–12 (2019).

    ADS 

    Google Scholar
     

  • Ruiz-Carpio, V. et al. Genomic reprograming analysis of the mesothelial to mesenchymal transition identifies biomarkers in peritoneal dialysis patients. Sci. Rep. 7, 44941 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Namvar, S. et al. Functional molecules in mesothelial-to-mesenchymal transition revealed by transcriptome analyses. J. Pathol. 245, 491–501 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kawka, E. et al. Epithelial-to-mesenchymal transition and migration of human peritoneal mesothelial cells undergoing senescence. Perit. Dial. Int. 39, 35 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Strippoli, R. et al. Transition and fibrosis during peritoneal dialysis. Stem Cells Int. 7, 102–123 (2015).

    CAS 

    Google Scholar
     

  • Zhang, Y., Alexander, P. B. & Wang, X. F. TGF-β family signaling in the control of cell proliferation and survival. Cold Spring Harbor Perspect. Biol. 9, 1–24 (2017).

    Article 

    Google Scholar
     

  • Harrington, J. S., Ryter, S. W., Plataki, M., Price, D. R. & Choi, A. M. K. Mitochondria in health, disease, and aging. Physiol. Rev. 103, 2349–2422 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lanz, M. C. et al. Increasing cell size remodels the proteome and promotes senescence. Mol. Cell 82, 3255-3269.e8 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, N. et al. The human α11 integrin promoter drives fibroblast-restricted expression in vivo and is regulated by TGF-β1 in a Smad- and Sp1-dependent manner. Matrix Biol. 29, 166–176 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bansal, R. et al. Integrin alpha 11 in the regulation of the myofibroblast phenotype: Implications for fibrotic diseases. Exp. Mol. Med. 49, e396 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krizhanovsky, V. et al. Senescence of activated stellate cells limits liver fibrosis. Cell https://doi.org/10.1016/j.cell.2008.06.049 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y., Wang, J. & Asahina, K. Mesothelial cells give rise to hepatic stellate cells and myofibroblasts via mesothelial–mesenchymal transition in liver injury. Proc. Natl. Acad. Sci. 110, 2324–2329 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murphy-Ullrich, J. E. & Sage, E. H. Revisiting the matricellular concept. Matrix Biol. J. Int. Soc. Matrix Biol. 37, 1–14 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Adams, J. C. & Lawler, J. The thrombospondins. Cold Spring Harbor Perspect. Biol. 3, a009712 (2011).

    Article 

    Google Scholar
     

  • Mikula-Pietrasik, J. et al. Bystander senescence in human peritoneal mesothelium and fibroblasts is related to thrombospondin-1-dependent activation of transforming growth factor-beta1. Int. J. Biochem. Cell Biol. 45, 2087–2096 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Isenberg, J. S. & Roberts, D. D. Thrombospondin-1 in maladaptive aging responses: A concept whose time has come. Am. J. Physiol. Cell Physiol. 318, C45–C63 (2020).

    Article 

    Google Scholar
     

  • Murphy-Ullrich, J. E. & Suto, M. J. Thrombospondin-1 regulation of latent TGF-β activation: A therapeutic target for fibrotic disease. Matrix Biol. 68–69, 28–43 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Jiménez, B. et al. Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat. Med. 6, 41–48 (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Ferrari do Outeiro-Bernstein, M. A. et al. A recombinant NH(2)-terminal heparin-binding domain of the adhesive glycoprotein, thrombospondin-1, promotes endothelial tube formation and cell survival: A possible role for syndecan-4 proteoglycan. Matrix Biol. J. Int. Soc. Matrix Biol. 21, 311–324 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Catar, R. et al. The proto-oncogene C-Fos transcriptionally regulates VEGF production during peritoneal inflammation. Kidney Int. 84, 1119 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, T. C. Functional roles of spink1 in cancers. Int. J. Mol. Sci. 22, 3814 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liao, C. et al. SPINKs in tumors: Potential therapeutic targets. Front. Oncol. 12, 833741 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campisi, J. & d’Adda di Fagagna, F. Cellular senescence: When bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 8, 729–740 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fane, M. & Weeraratna, A. T. How the ageing microenvironment influences tumour progression. Nat. Rev. Cancer 20, 89–106 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Faget, D. V., Ren, Q. & Stewart, S. A. Unmasking senescence: Context-dependent effects of SASP in cancer. Nat. Rev. Cancer 19, 439–453 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Özcan, S. et al. Unbiased analysis of senescence associated secretory phenotype (SASP) to identify common components following different genotoxic stresses. Aging 8, 1316–1329 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fico, F. & Santamaria-Martínez, A. TGFBI modulates tumour hypoxia and promotes breast cancer metastasis. Mol. Oncol. 14, 3198–3210 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, H., Wergedal, J. E., Zhao, Y. & Mohan, S. Targeted disruption of TGFBI in mice reveals its role in regulating bone mass and bone size through periosteal bone formation. Calcif. Tissue Int. 91, 81–87 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ozawa, D. et al. TGFBI expression in cancer stromal cells is associated with poor prognosis and hematogenous recurrence in esophageal squamous cell carcinoma. Ann. Surg. Oncol. 23, 282–289 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Son, H. N., Nam, J. O., Kim, S. & Kim, I. S. Multiple FAS1 domains and the RGD motif of TGFBI act cooperatively to bind αvβ3 integrin, leading to anti-angiogenic and anti-tumor effects. Biochimica Biophys. Acta Mol. Cell Res. 1833, 2378–2388 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Kim, J.-E. et al. RGD peptides released from beta ig-h3, a TGF-beta-induced cell-adhesive molecule, mediate apoptosis. Oncogene 22, 2045–2053 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Corona, A. & Blobe, G. C. The role of the extracellular matrix protein TGFBI in cancer. Cell. Signal. 84, 110028 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. Q. et al. SEMA3B-AS1 suppresses colorectal carcinoma progression by inhibiting Semaphorin 3B-dependent VEGF signaling pathway activation. MedComm 4, 1–19 (2023).

    Article 

    Google Scholar
     

  • Witowski, J. & Jorres, A. Angiogenic Activity of the Peritoneal Mesothelium: Implications for Peritoneal Dialysis. in Progress in Peritoneal Dialysis (ed. Krediet, R.) (Chapter 4, InTech, 2011). https://doi.org/10.5772/22084.

  • Lopez-Anton, M. et al. Telomere length profiles in primary human peritoneal mesothelial cells are consistent with senescence. Mech. Ageing Dev. 164, 37–40 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blatkiewicz, M. et al. The enhanced expression of ZWILCH predicts poor survival of adrenocortical carcinoma patients. Biomedicines 11, 1233 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szyszka, M. et al. Analysis of transcriptome, selected intracellular signaling pathways, proliferation and apoptosis of LNCaP cells exposed to high leptin concentrations. Int. J. Mol. Sci. 20, 5412 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stelcer, E. et al. Adropin stimulates proliferation and inhibits adrenocortical steroidogenesis in the human adrenal carcinoma (HAC15) Cell Line. Front. Endocrinol. 11, 561370 (2020).

    Article 

    Google Scholar
     

  • Gautier, L., Cope, L., Bolstad, B. M. & Irizarry, R. A. affy–analysis of Affymetrix GeneChip data at the probe level. Bioinformatics (Oxford, England) 20, 307–315 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Carvalho, B. S. & Irizarry, R. A. A framework for oligonucleotide microarray preprocessing. Bioinformatics (Oxford, England) 26, 2363–2367 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Gentleman, R., Carey, V., Huber, W. & Hahne, F. genefilter: genefilter: methods for filtering genes from high-throughput experiments. (2021).

  • Kassambara, A. Factoextra: extract and visualize the results of multivariate data analyses. R package version 1, (2016).

  • Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dawson, C. Ggprism: A “ggplot2” Extension Inspired by “GraphPad Prism”. R package version 1, (2021).

  • Wickham, H. ggplot2 (Springer, 2016). https://doi.org/10.1007/978-3-319-24277-4.

    Book 

    Google Scholar
     

  • Dennis, G. J. et al. DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol. 4, P3 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Fresno, C. & Fernández, E. A. RDAVIDWebService: A versatile R interface to DAVID. Bioinformatics (Oxford, England) 29, 2810–2811 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Kanehisa, M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 28, 1947–1951 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 51, D587–D592 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics (Oxford, England) 32, 2847–2849 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Korotkevich, G. et al. Fast gene set enrichment analysis. BioRxiv 60012 (2016).

  • Liberzon, A. et al. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst. 1, 417–425 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sacnun, J. M. et al. Proteome-wide differential effects of peritoneal dialysis fluid properties in an in vitro human endothelial cell model. Int. J. Mol. Sci. 23, 8010 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • D’Angelo, G. et al. Statistical models for the analysis of isobaric tags multiplexed quantitative proteomics. J. Proteome Res. 16, 3124–3136 (2017).

    Article 
    PubMed 

    Google Scholar