Search
Search
Close this search box.

Dietary inflammatory index could increase the risk of sarcopenia in patients with chronic kidney disease – Scientific Reports

  • Levey, A. S. & Coresh, J. Chronic kidney disease. Lancet 379, 165–180. https://doi.org/10.1016/s0140-6736(11)60178-5 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Kovesdy, C. P. Epidemiology of chronic kidney disease: an update 2022. Kidney Int. Suppl. 2011(12), 7–11. https://doi.org/10.1016/j.kisu.2021.11.003 (2022).

    Article 

    Google Scholar
     

  • Hosseinpanah, F., Kasraei, F., Nassiri, A. A. & Azizi, F. High prevalence of chronic kidney disease in Iran: A large population-based study. BMC Publ. Health 9, 44. https://doi.org/10.1186/1471-2458-9-44 (2009).

    Article 

    Google Scholar
     

  • Foley, R. N., Wang, C., Ishani, A., Collins, A. J. & Murray, A. M. Kidney function and sarcopenia in the United States general population: NHANES III. Am. J. Nephrol. 27, 279–286. https://doi.org/10.1159/000101827 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Raj, D. S., Sun, Y. & Tzamaloukas, A. H. Hypercatabolism in dialysis patients. Curr. Opin. Nephrol. Hypertens 17, 589–594. https://doi.org/10.1097/MNH.0b013e32830d5bfa (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Doherty, T. J. Invited review: Aging and sarcopenia. J. Appl. Physiol. 1985(95), 1717–1727. https://doi.org/10.1152/japplphysiol.00347.2003 (2003).

    Article 

    Google Scholar
     

  • Noce, A. et al. Cardiovascular protection of nephropathic male patients by oral food supplements. Cardiovasc. Ther. 2020, 1807941. https://doi.org/10.1155/2020/1807941 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bocedi, A. et al. Erythrocyte glutathione transferase in kidney transplantation: A probe for kidney detoxification efficiency. Cell Death Dis. 9, 288. https://doi.org/10.1038/s41419-018-0289-3 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fouque, D. et al. A proposed nomenclature and diagnostic criteria for protein–energy wasting in acute and chronic kidney disease. Kidney Int. 73, 391–398 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kovesdy, C. P., Kopple, J. D. & Kalantar-Zadeh, K. Management of protein–energy wasting in non-dialysis-dependent chronic kidney disease: Reconciling low protein intake with nutritional therapy. Am. J. Clin. Nutr. 97, 1163–1177. https://doi.org/10.3945/ajcn.112.036418 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chung, H. Y. et al. Molecular inflammation: Underpinnings of aging and age-related diseases. Ageing Res. Rev. 8, 18–30. https://doi.org/10.1016/j.arr.2008.07.002 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bano, G. et al. Inflammation and sarcopenia: A systematic review and meta-analysis. Maturitas 96, 10–15. https://doi.org/10.1016/j.maturitas.2016.11.006 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Popolo, A., Autore, G., Pinto, A. & Marzocco, S. Oxidative stress in patients with cardiovascular disease and chronic renal failure. Free Radic. Res. 47, 346–356. https://doi.org/10.3109/10715762.2013.779373 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qian, Q. Inflammation: A key contributor to the genesis and progression of chronic kidney disease. Contrib. Nephrol. 191, 72–83. https://doi.org/10.1159/000479257 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shivappa, N. et al. A population-based dietary inflammatory index predicts levels of C-reactive protein in the seasonal variation of blood cholesterol study (SEASONS). Public Health Nutr. 17, 1825–1833. https://doi.org/10.1017/s1368980013002565 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Tabung, F. K. et al. Construct validation of the dietary inflammatory index among postmenopausal women. Ann. Epidemiol. 25, 398–405. https://doi.org/10.1016/j.annepidem.2015.03.009 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Galas, A., Kulig, P. & Kulig, J. Dietary inflammatory index as a potential determinant of a length of hospitalization among surgical patients treated for colorectal cancer. Eur. J. Clinic. Nutr. 68, 1168–1174. https://doi.org/10.1038/ejcn.2014.120 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Syed Soffian, S. S. et al. Meta-analysis of the association between dietary inflammatory index (DII) and colorectal cancer. Nutrients https://doi.org/10.3390/nu14081555 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shu, Y. et al. Associations of dietary inflammatory index with prediabetes and insulin resistance. Front. Endocrinol. 13, 820932. https://doi.org/10.3389/fendo.2022.820932 (2022).

    Article 

    Google Scholar
     

  • Jayanama, K. et al. Relationship between diet quality scores and the risk of frailty and mortality in adults across a wide age spectrum. BMC Med. 19, 64. https://doi.org/10.1186/s12916-021-01918-5 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rouhani, M. H. et al. Dietary inflammatory index and its association with renal function and progression of chronic kidney disease. Clin. Nutr. ESPEN 29, 237–241. https://doi.org/10.1016/j.clnesp.2018.09.001 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Mazidi, M., Shivappa, N., Wirth, M. D., Hebert, J. R. & Kengne, A. P. Greater dietary inflammatory index score is associated with higher likelihood of chronic kidney disease. Br. J. Nutr. 120, 204–209. https://doi.org/10.1017/s0007114518001071 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Diao, H. et al. Association between dietary inflammatory index and sarcopenia: A meta-analysis. Nutrients https://doi.org/10.3390/nu15010219 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, Y. et al. Dietary inflammatory potential is associated with sarcopenia among chronic kidney disease population. Front. Nutr. 9, 856726. https://doi.org/10.3389/fnut.2022.856726 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Daniel, W. W. & Cross, C. L. Biostatistics: A Foundation for Analysis in the Health Sciences (Wiley, London, 2018).


    Google Scholar
     

  • Draugalis, J. R. & Plaza, C. M. Best practices for survey research reports revisited: Implications of target population, probability sampling, and response rate. Am. J. Pharmac. Educ. 73, 142 (2009).

    Article 

    Google Scholar
     

  • Lwanga, S. K., Lemeshow, S. & Organization, W. H. Sample Size Determination in Health Studies: A Practical Manual (World Health Organization, UK, 1991).


    Google Scholar
     

  • Moghaddam, M. B. et al. The Iranian version of international physical activity questionnaire (IPAQ) in Iran: Content and construct validity, factor structure, internal consistency and stability. World Appl Sci J 18, 1073–1080 (2012).


    Google Scholar
     

  • Chen, L.-K. et al. Sarcopenia in Asia: Consensus report of the Asian working group for sarcopenia. J. Am. Med. Dir. Assoc. 15, 95–101 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Mahmoodi, M. et al. Validation of the Persian version of the sarcopenia-specific quality of life questionnaire (SarQoL®-IR). Aging Clin. Exp. Res. 35, 137–145 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Hyun, Y. Y. et al. Nutritional status in adults with predialysis chronic kidney disease: KNOW-CKD study. J. Korean Med. Sci. 32, 257–263 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Mirmiran, P., Esfahani, F. H., Mehrabi, Y., Hedayati, M. & Azizi, F. Reliability and relative validity of an FFQ for nutrients in the Tehran lipid and glucose study. Public health nutrition 13, 654–662 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Willett, W. C., Howe, G. R. & Kushi, L. H. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 65, S1220–S1228 (1997).

    Article 

    Google Scholar
     

  • Shivappa, N., Steck, S. E., Hurley, T. G., Hussey, J. R. & Hébert, J. R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 17, 1689–1696 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Rapa, S. F., Di Iorio, B. R., Campiglia, P., Heidland, A. & Marzocco, S. Inflammation and oxidative stress in chronic kidney disease-potential therapeutic role of minerals, vitamins and plant-derived metabolites. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21010263 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kamper, R. S. et al. Associations between inflammatory markers, body composition, and physical function: the Copenhagen sarcopenia study. J. Cachexia Sarcopenia Muscle 12, 1641–1652. https://doi.org/10.1002/jcsm.12832 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pérez-Torres, A., Caverni-Muñoz, A. & González García, E. Mediterranean diet and chronic kidney disease (CKD): A practical approach. Nutrients https://doi.org/10.3390/nu15010097 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ganapathy, A. & Nieves, J. W. Nutrition and sarcopenia—what do we know?. Nutrients https://doi.org/10.3390/nu12061755 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amakye, W. et al. The relationship between dietary inflammatory index (DII) and muscle mass and strength in Chinese children aged 6–9 years. Asia Pac. J. Clin. Nutr. 27, 1315–1324. https://doi.org/10.6133/apjcn.201811_27(6).0019 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, Y. et al. Dietary inflammatory potential is associated with sarcopenia among chronic kidney disease population. Front. Nutr. 9, 856726 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bian, D. et al. Association between dietary inflammatory index and sarcopenia in Crohn’s disease patients. Nutrients https://doi.org/10.3390/nu14040901 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Byrd, D. A. et al. Development and validation of novel dietary and lifestyle inflammation scores. J. Nutr. 149, 2206–2218. https://doi.org/10.1093/jn/nxz165 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Firoozi, D. et al. The association between energy-adjusted dietary inflammatory index, body composition, and anthropometric indices in COVID-19-infected patients: A case-control study in Shiraz Iran. Int. J. Clin. Pract. 2022, 5452488. https://doi.org/10.1155/2022/5452488 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hébert, J. R., Shivappa, N., Wirth, M. D., Hussey, J. R. & Hurley, T. G. Perspective: The dietary inflammatory index (DII)-lessons learned, improvements made, and future directions. Adv. Nutr. 10, 185–195. https://doi.org/10.1093/advances/nmy071 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Picca, A. & Calvani, R. Molecular mechanism and pathogenesis of sarcopenia: An overview. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22063032 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bloom, I., Shand, C., Cooper, C., Robinson, S. & Baird, J. Diet quality and sarcopenia in older adults: A systematic review. Nutrients https://doi.org/10.3390/nu10030308 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, C. et al. Understanding the gut microbiota and sarcopenia: A systematic review. J Cachexia Sarcopenia Muscle 12, 1393–1407. https://doi.org/10.1002/jcsm.12784 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kizil, M. et al. Dietary inflammatory index is associated with serum C-reactive protein and protein energy wasting in hemodialysis patients: A cross-sectional study. Nutr. Res. Pract. 10, 404–410 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koppe, L., Fouque, D. & Kalantar-Zadeh, K. Kidney cachexia or protein–energy wasting in chronic kidney disease: Facts and numbers. J Cachexia Sarcopenia Muscle 10, 479–484. https://doi.org/10.1002/jcsm.12421 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hanna, R. M., Ghobry, L., Wassef, O., Rhee, C. M. & Kalantar-Zadeh, K. A practical approach to nutrition, protein–energy wasting, sarcopenia, and cachexia in patients with chronic kidney disease. Blood Purif. 49(1–2), 202–211. https://doi.org/10.1159/000504240 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, D. W. & Song, S. H. Sarcopenia in chronic kidney disease: From bench to bedside. Korean J. Intern. Med. 38, 303–321. https://doi.org/10.3904/kjim.2022.338 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, X., Lindholm, B., Stenvinkel, P. & Carrero, J. J. Dietary fat modification in patients with chronic kidney disease: n-3 fatty acids and beyond. J. Nephrol. 26, 960–974. https://doi.org/10.5301/jn.5000284 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, T. et al. Potential of fatty acids in treating sarcopenia: A systematic review. Nutrients https://doi.org/10.3390/nu15163613 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kawamura, A. et al. Combined intake of astaxanthin, β-carotene, and resveratrol elevates protein synthesis during muscle hypertrophy in mice. Nutrition 69, 110561. https://doi.org/10.1016/j.nut.2019.110561 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kitakaze, T., Harada, N., Imagita, H. & Yamaji, R. β-carotene increases muscle mass and hypertrophy in the soleus muscle in mice. J. Nutr. Sci. Vitaminol. 61, 481–487. https://doi.org/10.3177/jnsv.61.481 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Juszczak, A. B., Kupczak, M. & Konecki, T. Does vitamin supplementation play a role in chronic kidney disease?. Nutrients https://doi.org/10.3390/nu15132847 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, S., Zhang, L. & Li, S. Advances in nutritional supplementation for sarcopenia management. Front. Nutr. 10, 1189522. https://doi.org/10.3389/fnut.2023.1189522 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malesza, I. J. et al. High-fat, western-style diet, systemic inflammation, and gut microbiota: A narrative review. Cells https://doi.org/10.3390/cells10113164 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar