Search
Search
Close this search box.

Cyclosporine-induced kidney damage was halted by sitagliptin and hesperidin via increasing Nrf2 and suppressing TNF-α, NF-κB, and Bax – Scientific Reports

  • Ateyya, H. Amelioration of cyclosporine induced nephrotoxicity by dipeptidyl peptidase inhibitor vildagliptin. Int. Immunopharmacol. 28, 571–577 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, Q. et al. Mechanism of cyclosporine A nephrotoxicity: Oxidative stress, autophagy, and signalings. Food Chem. Toxicol. 118, 889–907 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • El-Sheikh, A. A. K., Morsy, M. A. & Abdel-latif, R. G. Modulation of eNOS/iNOS by nebivolol protects against cyclosporine A-mediated nephrotoxicity through targeting inflammatory and apoptotic pathways. Environ. Toxicol. Pharmacol. 69, 26–35 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Connell, S., Slattery, C., Ryan, M. P. & McMorrow, T. Identification of novel indicators of cyclosporine A nephrotoxicity in a CD-1 mouse model. Toxicol. Appl. Pharmacol. 252, 201–210 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Hye, E. Y. & Chul, W. Y. Established and newly proposed mechanisms of chronic cyclosporine nephropathy. Korean J. Intern. Med. 24, 81–92 (2009).

    Article 

    Google Scholar
     

  • Josephine, A. et al. Beneficial effects of sulfated polysaccharides from Sargassum wightii against mitochondrial alterations induced by Cyclosporine A in rat kidney. Mol. Nutr. Food Res. 51, 1413–1422 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Connell, S., Tuite, N., Slattery, C., Ryan, M. P. & McMorrow, T. Cyclosporine A-induced oxidative stress in human renal mesangial cells: A role for ERK 1/2 MAPK signaling. Toxicol. Sci. 126, 101–113 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Vangaveti, S., Das, P. & Kumar, V. L. Metformin and silymarin afford protection in cyclosporine A induced hepatorenal toxicity in rat by modulating redox status and inflammation. J. Biochem. Mol. Toxicol. 35, e22614 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joshi, S., Peck, A. B. & Khan, S. R. NADPH oxidase as a therapeutic target for oxalate induced injury in kidneys. Oxid. Med. Cell. Longev. 2013, (2013).

  • El-Naga, R. N. Pre-treatment with cardamonin protects against cisplatin-induced nephrotoxicity in rats: Impact on NOX-1, inflammation and apoptosis. Toxicol. Appl. Pharmacol. 274, 87–95 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Arriba, G., Calvino, M., Benito, S. & Parra, T. Cyclosporine A-induced apoptosis in renal tubular cells is related to oxidative damage and mitochondrial fission. Toxicol. Lett. 218, 30–38 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, S. et al. Protective effect of COMP-angiopoietin-1 on cyclosporine-induced renal injury in mice. Nephrol. Dial. Transplant 23, 2784–2794 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nam, H. K. et al. Rosuvastatin attenuates inflammation, apoptosis and fibrosis in a rat model of cyclosporine-induced nephropathy. Am. J. Nephrol. 37, 7–15 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carlos, C. P., Sonehara, N. M., Oliani, S. M. & Burdmann, E. A. Predictive usefulness of urinary biomarkers for the identification of cyclosporine A-induced nephrotoxicity in a rat model. PLoS ONE 9, e103660 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • M, A. et al. TNF is an essential mediator in lupus nephritis | Request PDF. Arthritis Rheum 3418–3419 https://www.researchgate.net/publication/230556983_TNF_is_an_essential_mediator_in_lupus_nephritis (2002).

  • Ibrahim, S. R. M. et al. Natural reno-protective agents against cyclosporine A-induced nephrotoxicity: An overview. Molecules 27, 7771 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wardyn, J. D., Ponsford, A. H. & Sanderson, C. M. Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochem. Soc. Trans. 43, 621–626 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, M. et al. Activation of the Nrf2/HO-1 antioxidant pathway contributes to the protective effects of Lycium barbarum polysaccharides in the rodent retina after ischemia-reperfusion-induced damage. PLoS ONE 9, e84800 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nouri, A. et al. Ferulic acid prevents cyclosporine-induced nephrotoxicity in rats through exerting anti-oxidant and anti-inflammatory effects via activation of Nrf2/HO-1 signaling and suppression of NF-κB/TNF-α axis. Naunyn. Schmiedebergs. Arch. Pharmacol. 395, 387–395 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lawrence, T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb. Perspect. Biol. 1, a001651 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Magendiramani, V. et al. S-allylcysteine attenuates renal injury by altering the expressions of iNOS and matrix metallo proteinase-2 during cyclosporine-induced nephrotoxicity in Wistar rats. J. Appl. Toxicol. 29, 522–530 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Penno, G., Garofolo, M. & Del Prato, S. Dipeptidyl peptidase-4 inhibition in chronic kidney disease and potential for protection against diabetes-related renal injury. Nutr. Metab. Cardiovasc. Dis. 26, 361–373 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nicotera, R. et al. Antiproteinuric effect of DPP-IV inhibitors in diabetic and non-diabetic kidney diseases. Pharmacol. Res. 159, 105019 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arjona Ferreira, J. C. et al. Efficacy and safety of sitagliptin versus glipizide in patients with type 2 diabetes and moderate-to-severe chronic renal insufficiency. Diabetes Care 36, 1067–1073 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Plosker, G. L. Sitagliptin: A review of its use in patients with type 2 diabetes mellitus. Drugs 74, 223–242 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mega, C., Teixeira-De-Lemos, E., Fernandes, R. & Reis, F. Renoprotective effects of the dipeptidyl peptidase-4 inhibitor sitagliptin: A review in type 2 diabetes. J. Diabetes Res. 2017, (2017).

  • Al-Qabbaa, S. M. et al. Sitagliptin mitigates diabetic nephropathy in a rat model of streptozotocin-induced type 2 diabetes: Possible role of PTP1B/JAK-STAT pathway. Int. J. Mol. Sci. 24, 6532 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jo, C. H., Kim, S., Park, J. S. & Kim, G. H. Anti-inflammatory action of sitagliptin and linagliptin in doxorubicin nephropathy. Kidney Blood Press. Res. 43, 987–999 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, D. et al. Sitagliptin ameliorates diabetic nephropathy by blocking TGF-β1/Smad signaling pathway. Int. J. Mol. Med. 41, 2784–2792 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohamed, R. H. et al. Sitagliptin’s renoprotective effect in a diabetic nephropathy model in rats: The potential role of PI3K/AKT pathway. Fundam. Clin. Pharmacol. 36, 324–337 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, W., Zhang, D., Wang, L., Sreeharsha, N. & Ning, Y. Curcumin synergistically potentiates the protective effect of sitagliptin against chronic deltamethrin nephrotoxicity in rats: Impact on pro-inflammatory cytokines and Nrf2/Ho-1 pathway. J. Biochem. Mol. Toxicol. 33, e22386 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Afkhami Fard, L. et al. Protective effects of sitagliptin on methotrexate-induced nephrotoxicity in rats. J. Environ. Sci. Heal. Part C Toxicol. Carcinog. 41, 22–35. https://doi.org/10.1080/26896583.2023.2186683 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Al Suleimani, Y. M. et al. The effect of the dipeptidyl peptidase-4 inhibitor sitagliptin on gentamicin nephrotoxicity in mice. Biomed. Pharmacother. 97, 1102–1108 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y. T. et al. Exendin-4 and sitagliptin protect kidney from ischemia-reperfusion injury through suppressing oxidative stress and inflammatory reaction. J. Transl. Med. 11, 1–9 (2013).

    Article 

    Google Scholar
     

  • Chang, M. W. et al. Sitagliptin protects rat kidneys from acute ischemia-reperfusion injury via upregulation of GLP-1 and GLP-1 receptors. Acta Pharmacol. Sin. 36, 119–130 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abdelrahman, A. M. et al. The renoprotective effect of the dipeptidyl peptidase-4 inhibitor sitagliptin on adenine-induced kidney disease in rats. Biomed. Pharmacother. 110, 667–676 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pyrzynska, K. Hesperidin: A review on extraction methods, stability and biological activities. Nutrients 14, 2387 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karacaer, C. et al. The protective effects of hesperidin pretreatment on kidney and remote organs against renal ischemia-reperfusion injury. Eur. Rev. Med. Pharmacol. Sci. 27, 2808–2814 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Caglayan, C., Kandemir, F. M., Darendelioğlu, E., Küçükler, S. & Ayna, A. Hesperidin protects liver and kidney against sodium fluoride-induced toxicity through anti-apoptotic and anti-autophagic mechanisms. Life Sci. 281, 119730 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Varışlı, B. et al. Hesperidin attenuates oxidative stress, inflammation, apoptosis, and cardiac dysfunction in sodium fluoride-induced cardiotoxicity in rats. Cardiovasc. Toxicol. 22, 727–735 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Turk, E. et al. Protective effect of hesperidin on sodium arsenite-induced nephrotoxicity and hepatotoxicity in rats. Biol. Trace Elem. Res. 189, 95–108 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elhelaly, A. E. et al. Protective effects of hesperidin and diosmin against acrylamide-induced liver, kidney, and brain oxidative damage in rats. Environ. Sci. Pollut. Res. Int. 26, 35151–35162 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Küçükler, S., Çomaklı, S., Özdemir, S., Çağlayan, C. & Kandemir, F. M. Hesperidin protects against the chlorpyrifos-induced chronic hepato-renal toxicity in rats associated with oxidative stress, inflammation, apoptosis, autophagy, and up-regulation of PARP-1/VEGF. Environ. Toxicol. 36, 1600–1617 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Hassan, N. H., Yousef, D. M. & Alsemeh, A. E. Hesperidin protects against aluminum-induced renal injury in rats via modulating MMP-9 and apoptosis: Biochemical, histological, and ultrastructural study. Environ. Sci. Pollut. Res. Int. 30, 36208–36227 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaltalioglu, K. & Coskun-Cevher, S. Potential of morin and hesperidin in the prevention of cisplatin-induced nephrotoxicity. Ren. Fail. 38, 1291–1299 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gelen, V. et al. The protective effects of hesperidin and curcumin on 5-fluorouracil-induced nephrotoxicity in mice. Environ. Sci. Pollut. Res. Int. 28, 47046–47055 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mas-Capdevila, A. et al. Effect of hesperidin on cardiovascular disease risk factors: The role of intestinal microbiota on hesperidin bioavailability. Nutrients 12, 1488 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gokce, M. et al. Cilostazol and diltiazem attenuate cyclosporine-induced nephrotoxicity in rats. Transplant. Proc. 44, 1738–1742 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cattaneo, D., Perico, N., Gaspari, F. & Remuzzi, G. Nephrotoxic aspects of cyclosporine. Transplant. Proc. 36, S234–S239 (2004).

    Article 

    Google Scholar
     

  • Myers, B. D., Ross, J., Newton, L., Luetscher, J. & Perlroth, M. Cyclosporine-associated chronic nephropathy. N. Engl. J. Med. 311, 699–705 (1984).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yeboah, M. M. et al. The epoxyeicosatrienoic acid analog PVPA ameliorates cyclosporine-induced hypertension and renal injury in rats. Am. J. Physiol. Renal Physiol. 311, F576–F585 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adekunle, I. A., Imafidon, C. E., Oladele, A. A. & Ayoka, A. O. Ginger polyphenols attenuate cyclosporine-induced disturbances in kidney function: Potential application in adjuvant transplant therapy. Pathophysiol. Off. J. Int. Soc. Pathophysiol. 25, 101–115 (2018).

    CAS 

    Google Scholar
     

  • Hashemi, S. R., Arab, H. A., Seifi, B. & Muhammadnejad, S. A comparison effects of l-citrulline and l-arginine against cyclosporine-induced blood pressure and biochemical changes in the rats. Hipertens. y riesgo Vasc. 38, 170–177 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ghafil, F. A., Kadhim, S. A. A., Majeed, S., Qassam, H. & Hadi, N. R. Nephroprotective effects of candesartan cilexetil against cyclosporine A-induced nephrotoxicity in a rat model. J. Med. Life 15, 1553–1562 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • El-Kashef, D. H. & Serrya, M. S. Sitagliptin ameliorates thioacetamide-induced acute liver injury via modulating TLR4/NF-KB signaling pathway in mice. Life Sci. 228, 266–273 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiang, Y. et al. L-carnitine protects against cyclosporine-induced pancreatic and renal injury in rats. Transplant. Proc. 45, 3127–3134 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aziz, M. M., Eid, N. I., Nada, A. S., Amin, N. E. D. & Ain-Shoka, A. A. Possible protective effect of the algae spirulina against nephrotoxicity induced by cyclosporine A and/or gamma radiation in rats. Environ. Sci. Pollut. Res. Int. 25, 9060–9070 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chung, B. H. et al. Rosiglitazone protects against cyclosporine-induced pancreatic and renal injury in rats. Am. J. Transplant. 5, 1856–1867 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lim, S. W. et al. Oral administration of ginseng ameliorates cyclosporine-induced pancreatic injury in an experimental mouse model. PLoS ONE 8, e72685 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nam, J. H. et al. beta-Cell dysfunction rather than insulin resistance is the main contributing factor for the development of postrenal transplantation diabetes mellitus. Transplantation 71, 1417–1423 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hecking, M., Sharif, A., Eller, K. & Jenssen, T. Management of post-transplant diabetes: Immunosuppression, early prevention, and novel antidiabetics. Transpl. Int. 34, 27 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, S. X. et al. Effects of hydrogen-rich saline on early acute kidney injury in severely burned rats by suppressing oxidative stress induced apoptosis and inflammation. J. Transl. Med. 13, 1–15 (2015).

    Article 

    Google Scholar
     

  • Biswas, S. K. Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxid. Med. Cell. Longev. 2016, (2016).

  • Al-Rabia, M. W. et al. 2-Methoxyestradiol TPGS micelles attenuate cyclosporine A-induced nephrotoxicity in rats through inhibition of TGF-β1 and p-ERK1/2 axis. Antioxidants (Basel, Switzerland) 11, 1499 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Parra Cid, T., Conejo García, J. R., Carballo Álvarez, F. & De Arriba, G. Antioxidant nutrients protect against cyclosporine A nephrotoxicity. Toxicology 189, 99–111 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Redondo-Horcajo, M. et al. Cyclosporine A-induced nitration of tyrosine 34 MnSOD in endothelial cells: Role of mitochondrial superoxide. Cardiovasc. Res. 87, 356–365 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sattarinezhad, E. et al. Protective effect of edaravone against cyclosporine-induced chronic nephropathy through antioxidant and nitric oxide modulating pathways in rats. Iran. J. Med. Sci. 42, 170–178 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raeisi, S. et al. Oxidative stress-induced renal telomere shortening as a mechanism of cyclosporine-induced nephrotoxicity. J. Biochem. Mol. Toxicol. 32, e22166 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Mohamadin, A. M., El-Beshbishy, H. A. & El-Mahdy, M. A. Green tea extract attenuates cyclosporine A-induced oxidative stress in rats. Pharmacol. Res. 51, 51–57 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tutanc, M. et al. Effects of erdosteine on cyclosporin-A-induced nephrotoxicity. Hum. Exp. Toxicol. 31, 565–573 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duru, M. et al. Protective effects of N-acetylcysteine on cyclosporine-A-induced nephrotoxicity. Renal Fail. 30(4), 453–459. https://doi.org/10.1080/08860220801985942 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Xiao, Z. et al. Mechanisms of cyclosporine-induced renal cell apoptosis: A systematic review. Am. J. Nephrol. 37, 30–40 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lai, Q. et al. Attenuation of cyclosporine A induced nephrotoxicity by schisandrin B through suppression of oxidative stress, apoptosis and autophagy. Int. Immunopharmacol. 52, 15–23 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Donnahoo, K. K., Shames, B. D., Harken, A. H. & Meldrum, D. R. Review article: The role of tumor necrosis factor in renal ischemia-reperfusion injury. J. Urol. 162, 196–203 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adil, M., Kandhare, A. D., Visnagri, A. & Bodhankar, S. L. Naringin ameliorates sodium arsenite-induced renal and hepatic toxicity in rats: Decisive role of KIM-1, Caspase-3, TGF-β, and TNF-α. Ren. Fail. 37, 1396–1407 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • El-Bassossy, H., Hassanien, M., Bima, A., Ghoneim, F. & Elsamanoudy, A. Renal oxidative stress and inflammatory response in perinatal Cyclosporine-A exposed rat progeny and its relation to gender. J. Microsc. Ultrastruct. 7, 44 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, P., Han, Z., Couvillon, A. D., Kaufman, R. J. & Exton, J. H. Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1alpha-mediated NF-kappaB activation and down-regulation of TRAF2 expression. Mol. Cell. Biol. 26, 3071–3084 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, S. W. et al. Prolonged endoplasmic reticulum stress induces apoptotic cell death in an experimental model of chronic cyclosporine nephropathy. Am. J. Nephrol. 28, 707–714 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Al-Lamki, R. S. et al. TL1A both promotes and protects from renal inflammation and injury. J. Am. Soc. Nephrol. 19, 953–960 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arab, H. H. et al. Inhibition of oxidative stress and apoptosis by camel milk mitigates cyclosporine-induced nephrotoxicity: Targeting Nrf2/HO-1 and AKT/eNOS/NO pathways. Food Sci. Nutr. 9, 3177–3190 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • González-Guerrero, C. et al. TLR4-mediated inflammation is a key pathogenic event leading to kidney damage and fibrosis in cyclosporine nephrotoxicity. Arch. Toxicol. 91, 1925–1939 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, C. W. et al. Expression of apoptosis-related genes in chronic cyclosporine nephrotoxicity in mice. Am. J. Transplant. 2, 391–399 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Z. et al. Sesamol induces human hepatocellular carcinoma cells apoptosis by impairing mitochondrial function and suppressing autophagy. Sci. Rep. 7, 45728 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmadvand, H., Nouryazdan, N., Nasri, M., Adibhesami, G. & Babaeenezhad, E. Renoprotective effects of gallic acid against gentamicin nephrotoxicity through amelioration of oxidative stress in rats. Braz. Arch. Biol. Technol. 63, 1–13 (2020).

    Article 

    Google Scholar
     

  • Babaeenezhad, E. et al. Exogenous glutathione protects against gentamicin-induced acute kidney injury by inhibiting NF-κB pathway, oxidative stress, and apoptosis and regulating PCNA. Drug Chem. Toxicol. 46, 441–450 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shihab, F. S., Andoh, T. F., Tanner, A. M., Yi, H. & Bennett, W. M. Expression of apoptosis regulatory genes in chronic cyclosporine nephrotoxicity favors apoptosis. Kidney Int. 56, 2147–2159 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, J., Yao, X., Weng, G., Qi, H. & Ye, X. Protective effect of curcumin against cyclosporine A-induced rat nephrotoxicity. Mol. Med. Rep. 17, 6038–6044 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Temel, Y., Kucukler, S., Yıldırım, S., Caglayan, C. & Kandemir, F. M. Protective effect of chrysin on cyclophosphamide-induced hepatotoxicity and nephrotoxicity via the inhibition of oxidative stress, inflammation, and apoptosis. Naunyn. Schmiedebergs. Arch. Pharmacol. 393, 325–337 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chiu, P. Y., Chen, N., Leong, P. K., Leung, H. Y. & Ko, K. M. Schisandrin B elicits a glutathione antioxidant response and protects against apoptosis via the redox-sensitive ERK/Nrf2 pathway in H9c2 cells. Mol. Cell. Biochem. 350, 237–250 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiong, L. et al. The Activation of Nrf2 and its downstream regulated genes mediates the antioxidative activities of Xueshuan Xinmaining tablet in human umbilical vein endothelial Cells. Evid. Based. Complement. Alternat. Med. 2015, (2015).

  • Ortega-Trejo, J. A. et al. Effect of fosfomycin on cyclosporine nephrotoxicity. Antibiot. (Basel, Switzerland) 9, 1–14 (2020).


    Google Scholar
     

  • Jin, M. et al. Klotho ameliorates cyclosporine A-induced nephropathy via PDLIM2/NF-kB p65 signaling pathway. Biochem. Biophys. Res. Commun. 486, 451–457 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hammoud, S. H. et al. Molecular basis of the counteraction by calcium channel blockers of cyclosporine nephrotoxicity. Am. J. Physiol. Renal Physiol. 315, F572–F582 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arab, H. H., Ashour, A. M., Alqarni, A. M., Arafa, E. S. A. & Kabel, A. M. Camel milk mitigates cyclosporine-induced renal damage in rats: Targeting p38/ERK/JNK MAPKs, NF-κB, and matrix metalloproteinases. Biology (Basel) 10, 442 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Gur, C., Kandemir, F. M., Caglayan, C. & Satıcı, E. Chemopreventive effects of hesperidin against paclitaxel-induced hepatotoxicity and nephrotoxicity via amendment of Nrf2/HO-1 and caspase-3/Bax/Bcl-2 signaling pathways. Chem. Biol. Interact. 365, 110073 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rajan, P. et al. Anti-diabetic effect of hesperidin on palmitate (PA)-treated HepG2 cells and high fat diet-induced obese mice. Food Res. Int. 162, 112059 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • El-Shahawy, A. A. G., Abdel-Moneim, A., Ebeid, A. S. M., Eldin, Z. E. & Zanaty, M. I. A novel layered double hydroxide-hesperidin nanoparticles exert antidiabetic, antioxidant and anti-inflammatory effects in rats with diabetes. Mol. Biol. Rep. 48, 5217–5232 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sundaram, R., Nandhakumar, E. & Haseena Banu, H. Hesperidin, a citrus flavonoid ameliorates hyperglycemia by regulating key enzymes of carbohydrate metabolism in streptozotocin-induced diabetic rats. Toxicol. Mech. Methods 29(9), 644–653. https://doi.org/10.1080/15376516.2019.164637 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kamel, K. M., Abd El-Raouf, O. M., Metwally, S. A., Abd El-Latif, H. A. & El-sayed, M. E. Hesperidin and rutin, antioxidant citrus flavonoids, attenuate cisplatin-induced nephrotoxicity in rats. J. Biochem. Mol. Toxicol. 28, 312–319 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nathiya, S., Rajaram, S. & Abraham, P. Hesperidin alleviates antitubercular drug induced oxidative stress, inflammation and apoptosis in rat liver. Int. J. Biomed. Res. https://doi.org/10.7439/IJBR.V7I7.3414 (2016).

    Article 

    Google Scholar
     

  • Ahmad, S. T. et al. Hesperidin alleviates acetaminophen induced toxicity in Wistar rats by abrogation of oxidative stress, apoptosis and inflammation. Toxicol. Lett. 208, 149–161 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Siddiqi, A., Nafees, S., Rashid, S., Sultana, S. & Saidullah, B. Hesperidin ameliorates trichloroethylene-induced nephrotoxicity by abrogation of oxidative stress and apoptosis in wistar rats. Mol. Cell. Biochem. 406, 9–20 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morsy, M. A., El-Sheikh, A. A. K., Ibrahim, A. R. N. & El-Daly, M. Protection of hesperidin against methotrexate-induced nephrotoxicity may be mediated by Nrf2/HO-1 pathway. Indian J. Pharm. Educ. Res. 55, 1066–1073 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Elavarasan, J. et al. Hesperidin-mediated expression of Nrf2 and upregulation of antioxidant status in senescent rat heart. J. Pharm. Pharmacol. 64, 1472–1482 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mahmoud, A. M., Mohammed, H. M., Khadrawy, S. M. & Galaly, S. R. Hesperidin protects against chemically induced hepatocarcinogenesis via modulation of Nrf2/ARE/HO-1, PPARγ and TGF-β1/Smad3 signaling, and amelioration of oxidative stress and inflammation. Chem. Biol. Interact. 277, 146–158 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Subramanian, P., Anandan, R., Jayapalan, J. J. & Hashim, O. H. Hesperidin protects gentamicin-induced nephrotoxicity via Nrf2/HO-1 signaling and inhibits inflammation mediated by NF-κB in rats. J. Funct. Foods 13, 89–99 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Aly, M. S. et al. Hesperidin protects against diethylnitrosamine/carbon tetrachloride-induced renal repercussions via up-regulation of Nrf2/HO-1 signaling and attenuation of oxidative stress. J. Appl. Pharm. Sci. 7, 007–014 (2017).

    CAS 

    Google Scholar
     

  • Aroor, A. R., Manrique-Acevedo, C. & DeMarco, V. G. The role of dipeptidylpeptidase-4 inhibitors in management of cardiovascular disease in diabetes; focus on linagliptin. Cardiovasc. Diabetol. 17, 1–15 (2018).

    Article 

    Google Scholar
     

  • Lovshin, J. A. & Zinman, B. Blood pressure-lowering effects of incretin-based diabetes therapies. Can. J. Diabetes 38, 364–371 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Mulvihill, E. E. & Drucker, D. J. Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocr. Rev. 35, 992–1019 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Von Websky, K., Reichetzeder, C. & Hocher, B. Physiology and pathophysiology of incretins in the kidney. Curr. Opin. Nephrol. Hypertens. 23, 54–60 (2014).

    Article 

    Google Scholar
     

  • Li, J. et al. The dipeptidyl peptidase-4 inhibitor sitagliptin protects against dyslipidemia-related kidney injury in Apolipoprotein E knockout mice. Int. J. Mol. Sci. 15, 11416–11434 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vaghasiya, J., Sheth, N., Bhalodia, Y. & Manek, R. Sitagliptin protects renal ischemia reperfusion induced renal damage in diabetes. Regul. Pept. 166, 48–54 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marques, C. et al. Sitagliptin prevents inflammation and apoptotic cell death in the kidney of type 2 diabetic animals. Mediators Inflamm. 2014, (2014).

  • Abuelezz, S. A., Hendawy, N. & Abdel Gawad, S. Alleviation of renal mitochondrial dysfunction and apoptosis underlies the protective effect of sitagliptin in gentamicin-induced nephrotoxicity. J. Pharm. Pharmacol. 68, 523–532 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shalaby, A. Renoprotective effect of sitagliptin (dipeptidyl peptidase- 4 inhibitor) aganist cisplatin induced nephrotoxicity in mice. Br. J. Pharm. Res. 4, 1116–1129 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Deger, M. et al. Protective effect of dapagliflozin against cyclosporine A-induced nephrotoxicity. Drug Chem. Toxicol. 45, 2637–2643 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nuransoy, A. et al. Protective effect of sitagliptin against renal ischemia reperfusion injury in rats. Ren. Fail. 37, 687–693 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Apaijai, N., Pintana, H., Chattipakorn, S. C. & Chattipakorn, N. Effects of vildagliptin versus sitagliptin, on cardiac function, heart rate variability and mitochondrial function in obese insulin-resistant rats. Br. J. Pharmacol. 169, 1048–1057 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pintana, H., Apaijai, N., Chattipakorn, N. & Chattipakorn, S. C. DPP-4 inhibitors improve cognition and brain mitochondrial function of insulin-resistant rats. J. Endocrinol. 218, 1–11 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alam, M. A., Hasan Chowdhury, M. R., Jain, P., Sagor, M. A. T. & Reza, H. M. DPP-4 inhibitor sitagliptin prevents inflammation and oxidative stress of heart and kidney in two kidney and one clip (2K1C) rats. Diabetol. Metab. Syndr. 7, 107 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nader, M. A., El-Awady, M. S., Shalaby, A. A. & El-Agamy, D. S. Sitagliptin exerts anti-inflammatory and anti-allergic effects in ovalbumin-induced murine model of allergic airway disease. Naunyn. Schmiedebergs. Arch. Pharmacol. 385, 909–919 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan, L. et al. Sitagliptin protects against hypoxia / reoxygenation ( H / R ) -induced cardiac microvascular endothelial cell injury. Am. J. Transl. Res. 11, 2099–2107 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Esposito, G. et al. Sitagliptin reduces inflammation, fibrosis and preserves diastolic function in a rat model of heart failure with preserved ejection fraction. Br. J. Pharmacol. 174, 4070 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsaia, T. H. et al. Sitagliptin attenuated brain damage and cognitive impairment in mice with chronic cerebral hypo-perfusion through suppressing oxidative stress and inflammatory reaction. J. Hypertens. 33, 1001–1013 (2015).

    Article 

    Google Scholar
     

  • El-Sahar, A. E., Safar, M. M., Zaki, H. F., Attia, A. S. & Ain-Shoka, A. A. Sitagliptin attenuates transient cerebral ischemia/reperfusion injury in diabetic rats: Implication of the oxidative-inflammatory-apoptotic pathway. Life Sci. 126, 81–86 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kong, L. et al. Sitagliptin activates the p62-Keap1-Nrf2 signalling pathway to alleviate oxidative stress and excessive autophagy in severe acute pancreatitis-related acute lung injury. Cell Death Dis. 12, 928 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Q. et al. Sitagliptin ameliorates renal tubular injury in diabetic kidney disease via STAT3-dependent mitochondrial homeostasis through SDF-1α/CXCR4 pathway. FASEB J. 34, 7500–7519 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Taha, M. et al. Palliative role of Zamzam water against cyclosporine-induced nephrotoxicity through modulating autophagy and apoptosis crosstalk. Toxics 11, 377 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • El-Agamy, D. S., Abo-Haded, H. M. & Elkablawy, M. A. Cardioprotective effects of sitagliptin against doxorubicin-induced cardiotoxicity in rats. Exp. Biol. Med. (Maywood) 241, 1577–1587 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abdelrahman, R. S. Sitagliptin exerts anti-apoptotic effect in nephrotoxicity induced by cisplatin in rats. Naunyn. Schmiedebergs. Arch. Pharmacol. 390, 721–731 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ohkawa, H., Ohishi, N. & Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95, 351–358 (1979).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beutler, E., Duron, O. & Kelly, B. M. Improved method for the determination of blood glutathione. J. Lab. Clin. Med. 61, 882–888 (1963).

    CAS 
    PubMed 

    Google Scholar
     

  • Aebi, H. Catalase in vitro. Methods Enzymol. 105, 121–126 (1984).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, Y. I., Oberley, L. W. & Li, Y. A simple method for clinical assay of superoxide dismutase. Clin. Chem. 34(3), 497–500 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Toghan, R. et al. Protective effects of Folic acid against reproductive, hematological, hepatic, and renal toxicity induced by Acetamiprid in male Albino rats. Toxicology 469, 153115 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saleh, S. M. M., Mahmoud, A. B., Al-Salahy, M. B. & Mohamed Moustafa, F. A. Morphological, immunohistochemical, and biochemical study on the ameliorative effect of gallic acid against bisphenol A-induced nephrotoxicity in male albino rats. Sci. Rep. 13, 1732 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dries, D. J. Histological and histochemical methods. Shock 30, 481 (2008).


    Google Scholar
     

  • Abd-Eldayem, A. M., Alnasser, S. M., Abd-Elhafeez, H. H., Soliman, S. A. & Abdel-Emam, R. A. Therapeutic versus preventative use of ginkgo biloba extract (EGb 761) against indomethacin-induced gastric ulcer in mice. Molecules 27, 5598 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar