Search
Search
Close this search box.

Correlation between soluble klotho and chronic kidney disease–mineral and bone disorder in chronic kidney disease: a meta-analysis – Scientific Reports

  • Drawz, P., et al. Chronic kidney disease. Ann. Intern. Med. 162(11), ITC1–16 (2015).

  • Glassock, R. J. et al. The global burden of chronic kidney disease: Estimates, variability and pitfalls. Nat. Rev. Nephrol. 13(2), 104–114 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Ruiz-Ortega, M. et al. Targeting the progression of chronic kidney disease. Nat. Rev. Nephrol. 16(5), 269–288 (2020).

    PubMed 

    Google Scholar
     

  • Chen, T. K. et al. Chronic kidney disease diagnosis and management: A review. JAMA. 322(13), 1294–1304 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schwarz, S. et al. Association of disorders in mineral metabolism with progression of chronic kidney disease. Clin. J. Am. Soc. Nephrol. 1(4), 825–831 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Hu, L. et al. Mineral bone disorders in kidney disease patients: The ever-current topic. Int. J. Mol. Sci. 23(20), 12223 (2022).

    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pazianas, M. et al. Osteoporosis and chronic kidney disease-mineral and bone disorder (CKD–MBD): Back to basics. Am. J. Kidney Dis. 78(4), 582–589 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Mehrotra, R. Disordered mineral metabolism and vascular calcification in nondialyzed chronic kidney disease patients. J. Ren. Nutr. 16(2), 100–118 (2006).

    PubMed 

    Google Scholar
     

  • Cozzolino, M. et al. Treatment of secondary hyperparathyroidism: the clinical utility of etelcalcetide. Ther. Clin. Risk Manag. 13, 679–689 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamada, S. et al. Role of chronic kidney disease (CKD)-mineral and bone disorder (MBD) in the pathogenesis of cardiovascular disease in CKD. J. Atheroscler. Thromb. 30(8), 835–850 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ersoy, F. F. A short story of Klotho and FGF23: A deuce of dark side or the savior?. Int. Urol. Nephrol. 46(3), 577–581 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Neyra, J. A. et al. Potential application of klotho in human chronic kidney disease. Bone 100, 41–49 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shiraki-Iida, T. et al. Structure of the mouse klotho gene and its two transcripts encoding membrane and secreted protein. FEBS Lett. 424(1–2), 6–10 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • Xu, Y. et al. Molecular basis of Klotho: From gene to function in aging. Endocr. Rev. 36(2), 174–193 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dhayat, N. A. et al. Parathyroid hormone and plasma phosphate are predictors of soluble α-Klotho levels in adults of European descent. J. Clin. Endocrinol. Metab. 105(4), e1135-1143 (2020).

    PubMed 

    Google Scholar
     

  • Oh, H. J. et al. Decreased circulating klotho levels in patients undergoing dialysis and relationship to oxidative stress and inflammation. Perit. Dial. Int. 35(1), 43–51 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodríguez, M. et al. FGF23 and mineral metabolism, implications in CKD–MBD. Nefrologia. 32(3), 275–278 (2012).

    PubMed 

    Google Scholar
     

  • Evrard, S. et al. SFBC/SN joined working group on vascular calcifications. Vascular calcification: From pathophysiology to biomarkers. Clin. Chim. Acta. 438, 401–414 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Slatopolsky, E. The intact nephron hypothesis: The concept and its implications for phosphate management in CKD-related mineral and bone disorder. Kidney Int. 79121, S3-8 (2011).

    PubMed 

    Google Scholar
     

  • Moher, D. et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ. 339, b2535 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • McGrath, T. A. et al. Recommendations for reporting of systematic reviews and meta-analyses of diagnostic test accuracy: A systematic review. Syst. Rev. 6(1), 194 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stang, A. Critical evaluation of the Newcastle–Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 25(9), 603–605 (2010).

    PubMed 

    Google Scholar
     

  • Wilson, D. B. et al. The role of method in treatment effectiveness research: Evidence from meta-analysis. Psychol. Methods 6(4), 413–429 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Buiten, M. S. et al. Soluble Klotho is not independently associated with cardiovascular disease in a population of dialysis patients. BMC Nephrol. 15, 197 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Desbiens, L. C. et al. FGF23-klotho axis, bone fractures, and arterial stiffness in dialysis: A case-control study. Osteoporos. Int. 29(10), 2345–2353 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Khodeir, S. A. et al. Clinical significance of fibroblast growth factor-23 and soluble alpha klotho in different stages of chronic kidney disease. Saudi J. Kidney Dis. Transpl. 30(1), 108–118 (2019).

    PubMed 

    Google Scholar
     

  • Koyama, D. et al. Soluble αKlotho as a candidate for the biomarker of aging. Biochem. Biophys. Res. Commun. 467(4), 1019–1025 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Q. F. et al. Plasma s-Klotho is related to kidney function and predicts adverse renal outcomes in patients with advanced chronic kidney disease. J. Investig. Med. 66(3), 669–675 (2018).

    PubMed 

    Google Scholar
     

  • Pasaoglu, O. T. et al. FGF23, alpha-Klotho and vitamin D mediated calcium-phosphate metabolism in haemodialysis patients. J. Med. Biochem. 40(2), 160–166 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rotondi, S. et al. Soluble α-Klotho serum levels in chronic kidney disease. Int. J. Endocrinol. 2015, 872193 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seiler, S. et al. Plasma Klotho is not related to kidney function and does not predict adverse outcome in patients with chronic kidney disease. Kidney Int. 83(1), 121–128 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y. et al. The clinical value of Klotho and FGF23 in cardiac valve calcification among patients with chronic kidney disease. Int. J. Gen. Med. 14, 857–866 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, H. R. et al. Circulating α-klotho levels in CKD and relationship to progression. Am. J. Kidney Dis. 61(6), 899–909 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Kitagawa, M. et al. A decreased level of serum soluble Klotho is an independent biomarker associated with arterial stiffness in patients with chronic kidney disease. PLoS ONE. 8(2), e56695 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yokoyama, K. et al. Serum soluble α-klotho in hemodialysis patients. Clin. Nephrol. 77(5), 347–351 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Cai, H. et al. Serum soluble klotho level is associated with abdominal aortic calcification in patients on maintenance hemodialysis. Blood Purif. 40(2), 120–126 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Cai, H. et al. A decreased level of soluble klotho can predict cardiovascular death in no or mild abdominal aortic calcification hemodialysis patients. Front. Med. (Lausanne) 8, 672000 (2021).

    PubMed 

    Google Scholar
     

  • Di Lullo, L. et al. Fibroblast growth factor 23 and parathyroid hormone predict extent of aortic valve calcifications in patients with mild to moderate chronic kidney disease. Clin. Kidney J. 8(6), 732–736 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, Y. et al. Association of serum klotho levels with different-staged vascular calcification status in patients with maintenance hemodialysis. BMC Nephrol. 23(1), 374 (2022).

    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buchanan, S. et al. Klotho, aging, and the failing kidney. Front. Endocrinol. (Lausanne) 11, 560 (2020).

    PubMed 

    Google Scholar
     

  • Zou, D. et al. The role of klotho in chronic kidney disease. BMC Nephrol. 19(1), 285 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dalton, G. D. et al. New insights into the mechanism of action of soluble klotho. Front. Endocrinol. (Lausanne) 8, 323 (2017).

    PubMed 

    Google Scholar
     

  • Tsuchiya, K. et al. Klotho/FGF23 axis in CKD. Contrib Nephrol. 185, 56–65 (2015).

    PubMed 

    Google Scholar
     

  • Andrukhova, O. et al. Klotho lacks an FGF23-independent role in mineral homeostasis. J. Bone Miner. Res. 32(10), 2049–2061 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Hu, M. C. et al. Klotho: A novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J. 24(9), 3438–3450 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuro-O, M. The FGF23 and Klotho system beyond mineral metabolism. Clin. Exp. Nephrol. 21(Suppl 1), 64–69 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Hu, M. C. et al. Klotho deficiency causes vascular calcification in chronic kidney disease. J. Am. Soc. Nephrol. 22(1), 124–136 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuro-o, M. Klotho as a regulator of oxidative stress and senescence. Biol. Chem. 389(3), 233–241 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Ide, N. et al. In vivo evidence for a limited role of proximal tubular Klotho in renal phosphate handling. Kidney Int. 90(2), 348–362 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Levin, A. et al. Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: Results of the study to evaluate early kidney disease. Kidney Int. 71(1), 31–38 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Kawai, M. The FGF23/Klotho axis in the regulation of mineral and metabolic homeostasis. Horm. Mol. Biol. Clin. Investig. 28(1), 55–67 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Cha, S. K. et al. Removal of sialic acid involving Klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1. Proc. Natl. Acad. Sci. USA 105(28), 9805–9810 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Galitzer, H. et al. Parathyroid cell resistance to fibroblast growth factor 23 in secondary hyperparathyroidism of chronic kidney disease. Kidney Int. 77(3), 211–218 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Komaba, H. et al. Depressed expression of Klotho and FGF receptor 1 in hyperplastic parathyroid glands from uremic patients. Kidney Int. 77(3), 232–238 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Riancho, J. A. et al. Association of the F352V variant of the Klotho gene with bone mineral density. Biogerontology. 8(2), 121–127 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Marçais, C. et al. Circulating klotho associates with cardiovascular morbidity and mortality during hemodialysis. J. Clin. Endocrinol. Metab. 102(9), 3154–3161 (2017).

    PubMed 

    Google Scholar
     

  • Chen, T. et al. The role and mechanism of α-klotho in the calcification of rat aortic vascular smooth muscle cells. Biomed. Res. Int. 2015, 194362 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chalhoub, D. et al. Association of Serum klotho with loss of bone mineral density and fracture risk in older adults. J. Am. Geriatr. Soc. 64(12), e304–e308 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kendrick, J. et al. The role of phosphorus in the development and progression of vascular calcification. Am. J. Kidney Dis. 58(5), 826–834 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sakan, H. et al. Reduced renal α-Klotho expression in CKD patients and its effect on renal phosphate handling and vitamin D metabolism. PLoS ONE. 9(1), e86301 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olauson, H. et al. Parathyroid-specific deletion of Klotho unravels a novel calcineurin-dependent FGF23 signaling pathway that regulates PTH secretion. PLoS Genet. 9(12), e1003975 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuro-o, M. et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 390(6655), 45–51 (1997).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Klinger, M. et al. Mortality predictor pattern in hemodialysis and peritoneal dialysis in diabetic patients. Adv. Clin. Exp. Med. 28(1), 133–135 (2019).

    PubMed 

    Google Scholar
     

  • Hatakeyama, S. et al.Prognosis of elderly Japanese patients aged ≥80 years undergoing hemodialysis. Sci. World J. 2013, 693514 (2013).


    Google Scholar
     

  • Krishnasamy R, et al. Progression of arterial stiffness is associated with changes in bone mineral markers in advanced CKD. BMC Nephrol. 18(1), 281 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu QF, et al. Plasma s-Klotho is related to kidney function and predicts adverse renal outcomes in patients with advanced chronic kidney disease. J Investig Med. 66(3), 669-675 (2018).

    PubMed 

    Google Scholar