Search
Search
Close this search box.

Contrast-induced acute kidney injury: a review of definition, pathogenesis, risk factors, prevention and treatment – BMC Nephrology

  • Ozkok S, Ozkok A. Contrast-induced acute kidney injury: a review of practical points. World J Nephrol. 2017;6(3):86–99.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seeliger E, Sendeski M, Rihal CS, Persson PB. Contrast-induced kidney injury: mechanisms, risk factors, and prevention. EUR HEART J. 2012;33(16):2007–15.

    Article 
    PubMed 

    Google Scholar
     

  • Nijssen EC, Rennenberg RJ, Nelemans PJ, Essers BA, Janssen MM, Vermeeren MA, Ommen VV, Wildberger JE. Prophylactic hydration to protect renal function from intravascular iodinated contrast material in patients at high risk of contrast-induced nephropathy (AMACING): a prospective, randomised, phase 3, controlled, open-label, non-inferiority trial. Lancet. 2017;389(10076):1312–22.

    Article 
    PubMed 

    Google Scholar
     

  • Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. NEPHRON. 2012;120(4):c179–84.

    PubMed 

    Google Scholar
     

  • van der Molen AJ, Reimer P, Dekkers IA, Bongartz G, Bellin MF, Bertolotto M, Clement O, Heinz-Peer G, Stacul F, Webb J, et al. Post-contrast acute kidney injury – part 1: definition, clinical features, incidence, role of contrast medium and risk factors: recommendations for updated ESUR Contrast Medium Safety Committee guidelines. EUR RADIOL. 2018;28(7):2845–55.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davenport MS, Perazella MA, Yee J, Dillman JR, Fine D, McDonald RJ, Rodby RA, Wang CL, Weinreb JC. Use of Intravenous Iodinated Contrast Media in Patients with Kidney Disease: Consensus Statements from the American College of Radiology and the National Kidney Foundation. RADIOLOGY 2020, 294(3):660–668.

  • Lameire N, Kellum JA. Contrast-induced acute kidney injury and renal support for acute kidney injury: a KDIGO summary (part 2). CRIT CARE. 2013;17(1):205.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van der Molen AJ, Reimer P, Dekkers IA, Bongartz G, Bellin MF, Bertolotto M, Clement O, Heinz-Peer G, Stacul F, Webb J, et al. Post-contrast acute kidney injury. Part 2: risk stratification, role of hydration and other prophylactic measures, patients taking metformin and chronic dialysis patients: recommendations for updated ESUR Contrast Medium Safety Committee guidelines. EUR RADIOL. 2018;28(7):2856–69.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, Johansen OE, Woerle HJ, Broedl UC, Zinman B. Empagliflozin and progression of kidney disease in type 2 diabetes. NEW ENGL J MED. 2016;375(4):323–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stratta P, Quaglia M, Airoldi A, Aime S. Structure-function relationships of iodinated contrast media and risk of nephrotoxicity. CURR MED CHEM. 2012;19(5):736–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spampinato MV, Abid A, Matheus MG. Current Radiographic Iodinated contrast agents. MAGN RESON IMAGING C. 2017;25(4):697–704.

    Article 

    Google Scholar
     

  • Thomsen HS, Morcos SK. Prevention of generalized reactions to CM. ACAD RADIOL. 2002;9(Suppl 2):S433–5.

    Article 
    PubMed 

    Google Scholar
     

  • Stacul F, van der Molen AJ, Reimer P, Webb JA, Thomsen HS, Morcos SK, Almen T, Aspelin P, Bellin MF, Clement O, et al. Contrast induced nephropathy: updated ESUR Contrast Media Safety Committee guidelines. EUR RADIOL. 2011;21(12):2527–41.

    Article 
    PubMed 

    Google Scholar
     

  • Kellum JA, Lameire N. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (part 1). CRIT CARE. 2013;17(1):204.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Y, Chen J, Fu G, Du Z, Fang Q, Cui L, et al. Chinese expert consensus on adverse reactions related to iodide contrast angiography. Chin J Intervention Cardiol. 2014;22(06):341–8.


    Google Scholar
     

  • Mehta RL, Cerda J, Burdmann EA, Tonelli M, Garcia-Garcia G, Jha V, Susantitaphong P, Rocco M, Vanholder R, Sever MS, et al. International Society of Nephrology’s 0by25 initiative for acute kidney injury (zero preventable deaths by 2025): a human rights case for nephrology. Lancet. 2015;385(9987):2616–43.

    Article 
    PubMed 

    Google Scholar
     

  • Maeder M, Klein M, Fehr T, Rickli H. Contrast nephropathy: review focusing on prevention. J AM COLL CARDIOL. 2004;44(9):1763–71.

    Article 
    PubMed 

    Google Scholar
     

  • Chandiramani R, Cao D, Nicolas J, Mehran R. Contrast-induced acute kidney injury. CARDIOVASC INTERV TH. 2020;35(3):209–17.

    Article 

    Google Scholar
     

  • Azzalini L, Spagnoli V, Ly HQ. Contrast-Induced Nephropathy: from pathophysiology to preventive strategies. CAN J CARDIOL. 2016;32(2):247–55.

    Article 
    PubMed 

    Google Scholar
     

  • Bucaloiu ID, Kirchner HL, Norfolk ER, Hartle JN, Perkins RM. Increased risk of death and de novo chronic kidney disease following reversible acute kidney injury. KIDNEY INT. 2012;81(5):477–85.

    Article 
    PubMed 

    Google Scholar
     

  • Moos SI, van Vemde DN, Stoker J, Bipat S. Contrast induced nephropathy in patients undergoing intravenous (IV) contrast enhanced computed tomography (CECT) and the relationship with risk factors: a meta-analysis. EUR J RADIOL. 2013;82(9):e387–99.

    Article 
    PubMed 

    Google Scholar
     

  • Kooiman J, Pasha SM, Zondag W, Sijpkens YW, van der Molen AJ, Huisman MV, Dekkers OM. Meta-analysis: serum creatinine changes following contrast enhanced CT imaging. EUR J RADIOL. 2012;81(10):2554–61.

    Article 
    PubMed 

    Google Scholar
     

  • Tepel M, Aspelin P, Lameire N. Contrast-induced nephropathy: a clinical and evidence-based approach. Circulation. 2006;113(14):1799–806.

    Article 
    PubMed 

    Google Scholar
     

  • Azzalini L. The clinical significance and management implications of chronic total occlusion Associated with Surgical Coronary Artery Revascularization. CAN J CARDIOL. 2016;32(11):1286–9.

    Article 
    PubMed 

    Google Scholar
     

  • Scharnweber T, Alhilali L, Fakhran S. Contrast-Induced Acute kidney Injury: pathophysiology, manifestations, Prevention, and management. MAGN RESON IMAGING C. 2017;25(4):743–53.

    Article 

    Google Scholar
     

  • Kusirisin P, Chattipakorn SC, Chattipakorn N. Contrast-induced nephropathy and oxidative stress: mechanistic insights for better interventional approaches. J TRANSL MED. 2020;18(1):400.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heyman SN, Rosen S, Khamaisi M, Idee JM, Rosenberger C. Reactive oxygen species and the pathogenesis of radiocontrast-induced nephropathy. INVEST RADIOL. 2010;45(4):188–95.

    Article 
    PubMed 

    Google Scholar
     

  • Hardiek K, Katholi RE, Ramkumar V, Deitrick C. Proximal tubule cell response to radiographic contrast media. AM J PHYSIOL-RENAL. 2001;280(1):F61–70.

    Article 
    CAS 

    Google Scholar
     

  • McCullough PA, Choi JP, Feghali GA, Schussler JM, Stoler RM, Vallabahn RC, Mehta A. Contrast-Induced Acute kidney Injury. J AM COLL CARDIOL. 2016;68(13):1465–73.

    Article 
    PubMed 

    Google Scholar
     

  • Zager RA, Johnson AC, Hanson SY. Radiographic contrast media-induced tubular injury: evaluation of oxidant stress and plasma membrane integrity. KIDNEY INT. 2003;64(1):128–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu GL, Lei R, Duan SB, Tang MM, Luo M, Xu Q. Atorvastatin alleviates iodinated contrast media-induced cytotoxicity in human proximal renal tubular epithelial cells. EXP THER MED. 2017;14(4):3309–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sendeski MM. Pathophysiology of renal tissue damage by iodinated contrast media. CLIN EXP PHARMACOL P. 2011;38(5):292–9.

    Article 
    CAS 

    Google Scholar
     

  • Huang S, Tang Y, Liu T, Zhang N, Yang X, Yang D, Hong G. A novel antioxidant protects against contrast Medium-Induced Acute kidney Injury in rats. FRONT PHARMACOL. 2020;11:599577.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ward DB, Brown KC, Valentovic MA. Radiocontrast Agent Diatrizoic Acid induces Mitophagy and oxidative stress via Calcium Dysregulation. INT J MOL SCI 2019, 20(17).

  • Hu C, Zhou G, Liu K, Yin W, Zhou L, Wang J, Chen L, Zuo S, Xie Y, Zuo X. CaMKII as a key regulator of contrast-induced nephropathy through mPTP opening in HK-2 cells. CELL SIGNAL. 2020;75:109734.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Caiazza A, Russo L, Sabbatini M, Russo D. Hemodynamic and tubular changes induced by contrast media. BIOMED RES INT 2014, 2014:578974.

  • Heyman SN, Rosen S, Rosenberger C. Renal parenchymal hypoxia, hypoxia adaptation, and the pathogenesis of radiocontrast nephropathy. CLIN J AM SOC NEPHRO. 2008;3(1):288–96.

    Article 

    Google Scholar
     

  • Dugbartey GJ, Redington AN. Prevention of contrast-induced nephropathy by limb ischemic preconditioning: underlying mechanisms and clinical effects. AM J PHYSIOL-RENAL. 2018;314(3):F319–28.

    Article 

    Google Scholar
     

  • Wong PC, Li Z, Guo J, Zhang A. Pathophysiology of contrast-induced nephropathy. INT J CARDIOL. 2012;158(2):186–92.

    Article 
    PubMed 

    Google Scholar
     

  • Heyman SN, Brezis M, Epstein FH, Spokes K, Silva P, Rosen S. Early renal medullary hypoxic injury from radiocontrast and indomethacin. KIDNEY INT. 1991;40(4):632–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mamoulakis C, Tsarouhas K, Fragkiadoulaki I, Heretis I, Wilks MF, Spandidos DA, Tsitsimpikou C, Tsatsakis A. Contrast-induced nephropathy: basic concepts, pathophysiological implications and prevention strategies. PHARMACOL THERAPEUT. 2017;180:99–112.

    Article 
    CAS 

    Google Scholar
     

  • Bucher AM, De Cecco CN, Schoepf UJ, Meinel FG, Krazinski AW, Spearman JV, McQuiston AD, Wang R, Bucher J, Vogl TJ, et al. Is contrast medium osmolality a causal factor for contrast-induced nephropathy? BIOMED RES INT. 2014;2014:931413.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Y, Ren K. The Mechanism of Contrast-Induced Acute Kidney Injury and Its Association with Diabetes Mellitus. CONTRAST MEDIA MOL I 2020, 2020:3295176.

  • Dai H, Zhao C, Xiong Y, He Q, Su W, Li J, Yang Y, Lin R, Xiang S, Shao J. Evaluation of contrast-induced acute kidney injury using IVIM and DKI MRI in a rat model of diabetic nephropathy. INSIGHTS IMAGING. 2022;13(1):110.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pisani A, Riccio E, Andreucci M, Faga T, Ashour M, Di Nuzzi A, Mancini A, Sabbatini M. Role of reactive oxygen species in pathogenesis of radiocontrast-induced nephropathy. BIOMED RES INT 2013, 2013:868321.

  • Said-Sadier N, Ojcius DM. Alarmins, inflammasomes and immunity. BIOMED J. 2012;35(6):437–49.

    Article 
    PubMed 

    Google Scholar
     

  • Kanasaki K, Taduri G, Koya D. Diabetic nephropathy: the role of inflammation in fibroblast activation and kidney fibrosis. FRONT ENDOCRINOL. 2013;4:7.

    Article 

    Google Scholar
     

  • Arend WP, Palmer G, Gabay C. IL-1, IL-18, and IL-33 families of cytokines. IMMUNOL REV. 2008;223:20–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pritchard AL, Hayward NK. Molecular pathways: mitogen-activated protein kinase pathway mutations and drug resistance. CLIN CANCER RES. 2013;19(9):2301–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee HC, Sheu SH, Yen HW, Lai WT, Chang JG. JNK/ATF2 pathway is involved in iodinated contrast media-induced apoptosis. AM J NEPHROL. 2010;31(2):125–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren Z, He H, Zuo Z, Xu Z, Wei Z, Deng J. The role of different SIRT1-mediated signaling pathways in toxic injury. CELL MOL BIOL LETT. 2019;24:36.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hong YA, Bae SY, Ahn SY, Kim J, Kwon YJ, Jung WY, Ko GJ. Resveratrol ameliorates contrast Induced Nephropathy through the activation of SIRT1-PGC-1alpha-Foxo1 signaling in mice. KIDNEY BLOOD PRESS R. 2017;42(4):641–53.

    Article 
    CAS 

    Google Scholar
     

  • Wirth A. Rho kinase and hypertension. Biochim Biophys Acta. 2010;1802(12):1276–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang X, Ding M, Zhu P, Huang H, Zhuang Q, Shen J, Cai Y, Zhao M, He Q. New Insights into the Nrf-2/HO-1 Signaling Axis and Its Application in Pediatric Respiratory Diseases. OXID MED CELL LONGEV 2019, 2019:3214196.

  • Tongqiang L, Shaopeng L, Xiaofang Y, Nana S, Xialian X, Jiachang H, Ting Z, Xiaoqiang D. Salvianolic Acid B Prevents Iodinated Contrast Media-Induced Acute Renal Injury in Rats via the PI3K/Akt/Nrf2 Pathway. OXID MED CELL LONGEV 2016, 2016:7079487.

  • Goodman AI, Olszanecki R, Yang LM, Quan S, Li M, Omura S, Stec DE, Abraham NG. Heme oxygenase-1 protects against radiocontrast-induced acute kidney injury by regulating anti-apoptotic proteins. KIDNEY INT. 2007;72(8):945–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao Z, Liao G, Zhou Q, Lv D, Holthfer H, Zou H. Sulforaphane Attenuates Contrast-Induced Nephropathy in Rats via Nrf2/HO-1 Pathway. OXID MED CELL LONGEV 2016, 2016:9825623.

  • Keaney JJ, Hannon CM, Murray PT. Contrast-induced acute kidney injury: how much contrast is safe? NEPHROL DIAL TRANSPL. 2013;28(6):1376–83.

    Article 

    Google Scholar
     

  • Liu ZZ, Schmerbach K, Lu Y, Perlewitz A, Nikitina T, Cantow K, Seeliger E, Persson PB, Patzak A, Liu R, et al. Iodinated contrast media cause direct tubular cell damage, leading to oxidative stress, low nitric oxide, and impairment of tubuloglomerular feedback. AM J PHYSIOL-RENAL. 2014;306(8):F864–72.

    Article 
    CAS 

    Google Scholar
     

  • Liu Y, Liu YH, Tan N, Chen JY, Zhou YL, Li LW, Duan CY, Chen PY, Luo JF, Li HL, et al. Comparison of the efficacy of rosuvastatin versus atorvastatin in preventing contrast induced nephropathy in patient with chronic kidney disease undergoing percutaneous coronary intervention. PLoS ONE. 2014;9(10):e111124.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pattharanitima P, Tasanarong A. Pharmacological strategies to prevent contrast-induced acute kidney injury. BIOMED RES INT 2014, 2014:236930.

  • Toruan M, Pranata R, Setianto BY, Haryana SM. The Role of MicroRNA in Contrast-Induced Nephropathy: A Scoping Review and Meta-Analysis. BIOMED RES INT 2020, 2020:4189621.

  • Zhang Y, Chen X, Gueydan C, Han J. Plasma membrane changes during programmed cell deaths. CELL RES. 2018;28(1):9–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ward DB, Valentovic MA. Contrast Induced Acute kidney Injury and direct cytotoxicity of Iodinated Radiocontrast Media on Renal Proximal Tubule cells. J PHARMACOL EXP THER. 2019;370(2):160–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu K, Hu C, Yin W, Zhou L, Gu X, Zuo X. An in vivo and in vitro model on the protective effect of cilnidipine on contrast-induced nephropathy via regulation of apoptosis and CaMKII/mPTP pathway. J BIOCHEM MOL TOXIC. 2023;37(1):e23238.

    Article 
    CAS 

    Google Scholar
     

  • Komada T, Muruve DA. The role of inflammasomes in kidney disease. NAT REV NEPHROL. 2019;15(8):501–20.

    Article 
    PubMed 

    Google Scholar
     

  • Xiao S, Zhang J, Dong W, Jiang D, Yang K. Pyroptosis: a type of cell death associated with inflammation. Chem life. 2017;37(03):423–8.


    Google Scholar
     

  • Harijith A, Ebenezer DL, Natarajan V. Reactive oxygen species at the crossroads of inflammasome and inflammation. FRONT PHYSIOL. 2014;5:352.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li N, Zhao T, Cao Y, Zhang H, Peng L, Wang Y, Zhou X, Wang Q, Li J, Yan M, et al. Tangshen Formula attenuates Diabetic kidney Injury by Imparting Anti-pyroptotic effects via the TXNIP-NLRP3-GSDMD Axis. FRONT PHARMACOL. 2020;11:623489.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu X, Li S, Lin Q, Shao X, Wu J, Zhang W, Cai H, Zhou W, Jiang N, Zhang Z, et al. alphaKlotho protein has therapeutic activity in contrast-induced acute kidney injury by limiting NLRP3 inflammasome-mediated pyroptosis and promoting autophagy. PHARMACOL RES. 2021;167:105531.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen F, Lu J, Yang X, Xiao B, Chen H, Pei W, Jin Y, Wang M, Li Y, Zhang J et al. Acetylbritannilactone attenuates contrast-induced acute kidney injury through its anti-pyroptosis effects. BIOSCIENCE REP 2020, 40(2).

  • Aglietti RA, Estevez A, Gupta A, Ramirez MG, Liu PS, Kayagaki N, Ciferri C, Dixit VM, Dueber EC. GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. P NATL ACAD SCI USA. 2016;113(28):7858–63.

    Article 
    CAS 

    Google Scholar
     

  • Zhang Z, Shao X, Jiang N, Mou S, Gu L, Li S, Lin Q, He Y, Zhang M, Zhou W, et al. Caspase-11-mediated tubular epithelial pyroptosis underlies contrast-induced acute kidney injury. CELL DEATH DIS. 2018;9(10):983.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin Q, Ni Z. Research progress of mitochondrial autophagy in kidney diseases. China Blood Purif. 2018;18(03):197–200.

    CAS 

    Google Scholar
     

  • Emma F, Montini G, Parikh SM, Salviati L. Mitochondrial dysfunction in inherited renal disease and acute kidney injury. NAT REV NEPHROL. 2016;12(5):267–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tatsuta T, Langer T. Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J. 2008;27(2):306–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lei R, Zhao F, Tang CY, Luo M, Yang SK, Cheng W, Li XW, Duan SB. Mitophagy plays a protective role in Iodinated contrast-Induced Acute Renal tubular epithelial cells Injury. Cell Physiol Biochem. 2018;46(3):975–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng W, Zhao F, Tang CY, Li XW, Luo M, Duan SB. Comparison of iohexol and iodixanol induced nephrotoxicity, mitochondrial damage and mitophagy in a new contrast-induced acute kidney injury rat model. ARCH TOXICOL. 2018;92(7):2245–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin Q, Li S, Jiang N, Shao X, Zhang M, Jin H, Zhang Z, Shen J, Zhou Y, Zhou W, et al. PINK1-parkin pathway of mitophagy protects against contrast-induced acute kidney injury via decreasing mitochondrial ROS and NLRP3 inflammasome activation. REDOX BIOL. 2019;26:101254.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang X, Yan X, Yang D, Zhou J, Song J, Yang D. Rapamycin attenuates mitochondrial injury and renal tubular cell apoptosis in experimental contrast-induced acute kidney injury in rats. BIOSCIENCE REP 2018, 38(6).

  • Al-Shawadfy MG, Kamel G, Abd-Allah A. Crosstalk among apoptosis, inflammation, and autophagy in relation to melatonin protective effect against contrast-induced nephropathy in rats. CAN J PHYSIOL PHARM. 2022;100(9):858–67.

    Article 
    CAS 

    Google Scholar
     

  • Ko GJ, Bae SY, Hong YA, Pyo HJ, Kwon YJ. Radiocontrast-induced nephropathy is attenuated by autophagy through regulation of apoptosis and inflammation. HUM EXP TOXICOL. 2016;35(7):724–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dragomir MP, Knutsen E, Calin GA. SnapShot: unconventional miRNA functions. Cell. 2018;174(4):1038.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gutierrez-Escolano A, Santacruz-Vazquez E, Gomez-Perez F. Dysregulated microRNAs involved in contrast-induced acute kidney injury in rat and human. Ren Fail. 2015;37(9):1498–506.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, Liu B, Liu Y, Chen S, Yang J, Liu J, Sun G, Bei WJ, Wang K, Chen Z, et al. MicroRNA expression profile by next-generation sequencing in a novel rat model of contrast-induced acute kidney injury. ANN TRANSL MED. 2019;7(8):178.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu B, Chai Y, Guo W, Lin K, Chen S, Liu J, Sun G, Chen G, Song F, He Y, et al. MicroRNA-188 aggravates contrast-induced apoptosis by targeting SRSF7 in novel isotonic contrast-induced acute kidney injury rat models and renal tubular epithelial cells. ANN TRANSL MED. 2019;7(16):378.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niu HM, Guo LQ, Qiao YH, Jiao HY. MiR-429 prohibited NF-kappaB signalling to alleviate contrast-induced acute kidney injury via targeting PDCD4. AUTOIMMUNITY 2021, 54(5):243–253.

  • Liu X, Li Q, Sun L, Chen L, Li Y, Huang B, Liu Y, Jiang C. miR-30e-5p regulates autophagy and apoptosis by targeting Beclin1 involved in contrast-induced acute kidney Injury. CURR MED CHEM. 2021;28(38):7974–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu J, Ma L, Fu P. MicroRNA-30c attenuates contrast-induced acute kidney injury by suppressing NLRP3 inflammasome. INT IMMUNOPHARMACOL. 2020;87:106457.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zen K, Zhang CY. Circulating microRNAs: a novel class of biomarkers to diagnose and monitor human cancers. MED RES REV. 2012;32(2):326–48.

    Article 
    PubMed 

    Google Scholar
     

  • Sun SQ, Zhang T, Ding D, Zhang WF, Wang XL, Sun Z, Hu LH, Qin SY, Shen LH, He B. Circulating MicroRNA-188, -30a, and– 30e as early biomarkers for contrast-Induced Acute kidney Injury. J AM HEART ASSOC 2016, 5(8).

  • Kodzwa R. ACR Manual on contrast media: 2018 updates. RADIOL TECHNOL. 2019;91(1):97–100.

    PubMed 

    Google Scholar
     

  • Morabito S, Pistolesi V, Benedetti G, Di Roma A, Colantonio R, Mancone M, Sardella G, Cibelli L, Ambrosino M, Polistena F, et al. Incidence of contrast-induced acute kidney injury associated with diagnostic or interventional coronary angiography. J NEPHROL. 2012;25(6):1098–107.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu MJ, Tsai SF, Lee CT, Wu CY. The predictive value of Hyperuricemia on Renal Outcome after contrast-enhanced computerized tomography. J CLIN MED 2019, 8(7).

  • Eng J, Wilson RF, Subramaniam RM, Zhang A, Suarez-Cuervo C, Turban S, Choi MJ, Sherrod C, Hutfless S, Iyoha EE, et al. Comparative effect of contrast media type on the incidence of contrast-Induced Nephropathy: a systematic review and Meta-analysis. ANN INTERN MED. 2016;164(6):417–24.

    Article 
    PubMed 

    Google Scholar
     

  • Barrett BJ, Carlisle EJ. Metaanalysis of the relative nephrotoxicity of high- and low-osmolality iodinated contrast media. Radiology. 1993;188(1):171–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Azzalini L, Poletti E, Lombardo F, Laricchia A, Beneduce A, Moscardelli S, Bellini B, Maccagni D, Cappelletti A, Ancona MB, et al. Risk of contrast-induced nephropathy in patients undergoing complex percutaneous coronary intervention. INT J CARDIOL. 2019;290:59–63.

    Article 
    PubMed 

    Google Scholar
     

  • Balemans CE, Reichert LJ, van Schelven BI, van den Brand JA, Wetzels JF. Epidemiology of contrast material-induced nephropathy in the era of hydration. Radiology. 2012;263(3):706–13.

    Article 
    PubMed 

    Google Scholar
     

  • Moore A, Dickerson E, Dillman JR, Vummidi D, Kershaw DB, Khalatbari S, Davenport MS. Incidence of nonconfounded post-computed tomography acute kidney injury in hospitalized patients with stable renal function receiving intravenous iodinated contrast material. CURR PROBL DIAGN RAD. 2014;43(5):237–41.

    Article 

    Google Scholar
     

  • (2016) > Official release. Chinese Journal of Interventional Cardiology. 2016;24(06):315.

  • Weisbord SD, Gallagher M, Jneid H, Garcia S, Cass A, Thwin SS, Conner TA, Chertow GM, Bhatt DL, Shunk K, et al. Outcomes after angiography with sodium bicarbonate and Acetylcysteine. NEW ENGL J MED. 2018;378(7):603–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Biernacka-Fialkowska B, Szuksztul M, Suslik W, Dzierwa K, Tekieli L, Kostkiewicz M, Podolec P, Pieniazek P. Intravenous N-acetylcysteine for the PRevention of contrast-induced nephropathy – a prospective, single-center, randomized, placebo-controlled trial. The INPROC trial. POSTEP KARDIOL INTER. 2018;14(1):59–66.


    Google Scholar
     

  • Kang X, Hu DY, Li CB, Ai ZS, Peng A. N-acetylcysteine for the prevention of contrast-induced nephropathy in patients with pre-existing renal insufficiency or diabetes: a systematic review and meta-analysis. Ren Fail. 2015;37(10):297–303.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Palli E, Makris D, Papanikolaou J, Garoufalis G, Tsilioni I, Zygoulis P, Zakynthinos E. The impact of N-acetylcysteine and ascorbic acid in contrast-induced nephropathy in critical care patients: an open-label randomized controlled study. CRIT CARE. 2017;21(1):269.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gandhi S, Mosleh W, Abdel-Qadir H, Farkouh ME. Statins and contrast-induced acute kidney injury with coronary angiography. AM J MED. 2014;127(10):987–1000.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vanmassenhove J, Vanholder R, Lameire N. Statins for the prevention of contrast-induced acute kidney injury. CURR OPIN NEPHROL HY. 2016;25(6):508–17.

    Article 
    CAS 

    Google Scholar
     

  • Giacoppo D, Capodanno D, Capranzano P, Aruta P, Tamburino C. Meta-analysis of randomized controlled trials of preprocedural statin administration for reducing contrast-induced acute kidney injury in patients undergoing coronary catheterization. AM J CARDIOL. 2014;114(4):541–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van Baar M, van Ruiten CC, Muskiet M, van Bloemendaal L, IJzerman RG, van Raalte DH. SGLT2 inhibitors in combination therapy: from mechanisms to clinical considerations in type 2 diabetes management. Diabetes Care. 2018;41(8):1543–56.

    Article 
    PubMed 

    Google Scholar
     

  • Cowie MR, Fisher M. SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. NAT REV CARDIOL. 2020;17(12):761–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nusca A, Tuccinardi D, Pieralice S, Giannone S, Carpenito M, Monte L, Watanabe M, Cavallari I, Maddaloni E, Ussia GP, et al. Platelet effects of anti-diabetic therapies: New perspectives in the management of patients with diabetes and Cardiovascular Disease. FRONT PHARMACOL. 2021;12:670155.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang X, Guo X, Yan G, Zhang Y, Yao Y, Qiao Y, Wang D, Chen G, Zhang W, Tang C, et al. Dapagliflozin attenuates contrast-induced acute kidney Injury by regulating the HIF-1alpha/HE4/NF-kappaB pathway. J CARDIOVASC PHARM. 2022;79(6):904–13.

    Article 
    CAS 

    Google Scholar
     

  • Kultursay B, Yilmaz C, Guven B, Mutlu D, Karagoz A. Potential renoprotective effect of SGLT2 inhibitors against contrast-induced AKI in diabetic STEMI patients undergoing primary PCI. KARDIOL POL. 2024;82(1):29–36.

    Article 
    PubMed 

    Google Scholar
     

  • Komiyama K, Ashikaga T, Inagaki D, Miyabe T, Arai M, Yoshida K, Miyazawa S, Nakada A, Kawamura I, Masuda S, et al. Sodium bicarbonate-ascorbic acid combination for Prevention of contrast-Induced Nephropathy in chronic kidney disease patients undergoing catheterization. CIRC J. 2017;81(2):235–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu Y, Zheng X, Liang B, Gao J, Gu Z. Vitamins for Prevention of contrast-induced acute kidney Injury: a systematic review and Trial Sequential Analysis. AM J CARDIOVASC DRUG. 2018;18(5):373–86.

    Article 
    CAS 

    Google Scholar
     

  • Arabmomeni M, Najafian J, Abdar EM, Samadi M, Mirbagher L. Comparison between theophylline, N-acetylcysteine, and theophylline plus N-acetylcysteine for the prevention of contrast-induced nephropathy. ARYA ATHEROSCLER. 2015;11(1):43–9.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dai B, Liu Y, Fu L, Li Y, Zhang J, Mei C. Effect of theophylline on prevention of contrast-induced acute kidney injury: a meta-analysis of randomized controlled trials. AM J KIDNEY DIS. 2012;60(3):360–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huber W, Huber T, Baum S, Franzen M, Schmidt C, Stadlbauer T, Beitz A, Schmid RM, Schmid S. Sodium bicarbonate prevents contrast-Induced Nephropathy in Addition to Theophylline: a Randomized Controlled Trial. Medicine. 2016;95(21):e3720.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar