Search
Search
Close this search box.

Antibiotic dosing recommendations in critically ill patients receiving new innovative kidney replacement therapy – BMC Nephrology

  • Vaara ST, Pettilä V, Reinikainen M, Kaukonen KM. Finnish Intensive Care Consortium. Population-based incidence, mortality and quality of life in critically ill patients treated with renal replacement therapy: a nationwide retrospective cohort study in Finnish intensive care units. Crit Care. 2012;16(1):R13.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bagshaw SM, Laupland KB, Doig CJ, Mortis G, Fick GH, Mucenski M, et al. Prognosis for long-term survival and renal recovery in critically ill patients with severe acute renal failure: a population-based study. Crit Care. 2005;9(6):R700–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoff BM, Maker JH, Dager WE, Heintz BH. Antibiotic dosing for critically ill adult patients receiving intermittent hemodialysis, prolonged intermittent renal replacement therapy, and continuous renal replacement therapy: an update. Ann Pharmacother. 2020;54(1):43–55.

    Article 
    PubMed 

    Google Scholar
     

  • Pistolesi V, Morabito S, Di Mario F, Regolisti G, Cantarelli C, Fiaccadori E. A guide to understanding Antimicrobial Drug Dosing in critically ill patients on renal replacement therapy. Antimicrob Agents Chemother. 2019;63(8):e00583–19.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jang SM, Lewis SJ, Mueller BA. Harmonizing antibiotic regimens with renal replacement therapy. Expert Rev Anti Infect Ther. 2020;18(9):887–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heung M, Yessayan L. Renal replacement therapy in Acute kidney Injury: controversies and Consensus. Crit Care Clin. 2017;33(2):365–78.

    Article 
    PubMed 

    Google Scholar
     

  • Zaman T, Moore K, Jellerson J, Chahal Y, Schumacher J, Dalessandri-Silva C, et al. Extension of Tablo TrEatmeNt Duration (XTEND) study: successful 24 h prolonged therapy with Tablo in critical patients. BMC Nephrol. 2022;23(1):338.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carlier M, Taccone FS, Beumier M, Seyler L, Cotton F, Jacobs F, Roberts JA. Population pharmacokinetics and dosing simulations of cefepime in septic shock patients receiving continuous renal replacement therapy. Int J Antimicrob Agents. 2015;46(4):413–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lewis SJ, Kays MB, Mueller BA. Use of Monte Carlo Simulations to Determine Optimal Carbapenem Dosing in critically ill patients receiving prolonged intermittent renal replacement therapy. J Clin Pharmacol. 2016;56(10):1277–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chaijamorn W, Charoensareerat T, Srisawat N, Pattharachayakul S, Boonpeng A. Cefepime dosing regimens in critically ill patients receiving continuous renal replacement therapy: a Monte Carlo simulation study. J Intensive Care. 2018;6:61.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jang SM, Gharibian KN, Lewis SJ, Fissell WH, Tolwani AJ, Mueller BA. A Monte Carlo simulation approach for β-lactam dosing in critically ill patients receiving prolonged intermittent renal replacement therapy. J Clin Pharmacol. 2018;58:1254–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sember AM, LoFaso ME, Lewis SJ. An optimal extended-infusion dosing of cefepime and ceftazidime in critically ill patients with continuous renal replacement therapy. J Crit Care. 2022;69:154011.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bagshaw SM, Wald R, Adhikari NKJ, Bellomo R, da Costa BR, Dreyfuss D, et al. Timing of initiation of renal-replacement therapy in acute kidney injury. N Engl J Med. 2020;383(3):240–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Allaouchiche B, Breilh D, Jaumain H, Gaillard B, Renard S, Saux MC. Pharmacokinetics of cefepime during continuous venovenous hemodiafiltration. Antimicrob Agents Chemother. 1997;41(11):2424–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malone RS, Fish DN, Abraham E, Teitelbaum I. Pharmacokinetics of cefepime during continuous renal replacement therapy in critically ill patients. Antimicrob Agents Chemother. 2001;45(11):3148–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Isla A, Gascón AR, Maynar J, Arzuaga A, Toral D, Pedraz JL. Cefepime and continuous renal replacement therapy (CRRT): in vitro permeability of two CRRT membranes and pharmacokinetics in four critically ill patients. Clin Ther. 2005;27(5):599–608.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Philpott CD, Droege CA, Droege ME, Healy DP, Courter JD, Ernst NE, et al. Pharmacokinetics and pharmacodynamics of extended-infusion cefepime in critically ill patients receiving continuous renal replacement therapy: a prospective, open-label study. Pharmacotherapy. 2019;39(11):1066–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mariat C, Venet C, Jehl F, Mwewa S, Lazarevic V, Diconne E, Fonsale N, Carricajo A, Guyomarc’h S, Vermesch R, Aubert G, Bidault R, Bertrand JC, Zeni F. Continuous infusion of ceftazidime in critically ill patients undergoing continuous venovenous haemodiafiltration: pharmacokinetic evaluation and dose recommendation. Crit Care. 2006;10(1):R26.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • König C, Braune S, Roberts JA, Nierhaus A, Steinmetz OM, Baehr M, Frey OR, Langebrake C, Kluge S. Population pharmacokinetics and dosing simulations of ceftazidime in critically ill patients receiving sustained low-efficiency dialysis. J Antimicrob Chemother. 2017;72(5):1433–40.

    Article 
    PubMed 

    Google Scholar
     

  • Isla A, Gascon AR, Maynar J, Arzuaga A, Sanchez-Izquierdo JA, Pedraz JL. In vitro AN69 and polysulphone membrane permeability to ceftazidime and in vivo pharmacokinetics during continuous renal replacement therapies. Chemotherapy. 2007;53(3):194–201.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kinowski JM, de la Coussaye JE, Bressolle F, Fabre D, Saissi G, Bouvet O, et al. Multiple-dose pharmacokinetics of amikacin and ceftazidime in critically ill patients with septic multiple-organ failure during intermittent hemofiltration. Antimicrob Agents Chemother. 1993;37(3):464–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Afshartous D, Bauer SR, Connor MJ, Aduroja OA, Amde M, Salem C, et al. Pharmacokinetics and pharmacodynamics of meropenem and imipenem in critically ill patients treated with continuous venovenous hemodialysis. Am J Kidney Dis. 2014;63(1):170–1.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boucher BA, Hudson JQ, Hill DM, Swanson JM, Wood GC, Laizure SC, et al. Pharmacokinetics of imipenem/cilastatin burn intensive care unit patients undergoing high-dose continuous venovenous hemofiltration. Pharmacotherapy. 2016;36(12):1229–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fish DN, Teitelbaum I, Abraham E. Pharmacokinetics and pharmacodynamics of imipenem during continuous renal replacement therapy in critically ill patients. Antimicrob Agents Chemother. 2005;49(6):2421–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mueller BA, Scarim SK, Macias WL. Comparison of imipenem pharmacokinetics in patients with acute or chronic renal failure treated with continuous hemofiltration. Am J Kidney Dis. 1993;21(2):172–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hashimoto S, Honda M, Yamaguchi M, Sekimoto M, Tanaka Y. Pharmacokinetics of imipenem and cilastatin during continuous venovenous hemodialysis in patients who are critically ill. ASAIO J. 1997;43(1):84–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Vos MC, Vincent HH, Yzerman EP. Clearance of imipenem/cilastatin in acute renal failure patients treated by continuous hemodiafiltration (CAVHD). Intensive Care Med. 1992;18(5):282–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kihara M, Ikeda Y, Shibata K, Masumori S, Ebira H, Shiratori K, et al. Pharmacokinetic profiles of intravenous imipenem/cilastatin during slow hemodialysis in critically ill patients. Clin Nephrol. 1994;42(3):193–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Primaxin [package insert]. Whitehouse Station. NJ: Merck Sharp & Dohme Corp; 2016.


    Google Scholar
     

  • Tegeder I, Bremer F, Oelkers R, Schobel H, Schüttler J, Brune K, et al. Pharmacokinetics of imipenem-cilastatin in critically ill patients undergoing continuous venovenous hemofiltration. Antimicrob Agents Chemother. 1997;41(12):2640–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Isla A, Maynar J, Sánchez-Izquierdo JA, Gascón AR, Arzuaga A, Corral E, et al. Meropenem and continuous renal replacement therapy: in vitro permeability of 2 continuous renal replacement therapy membranes and influence of patient renal function on the pharmacokinetics in critically ill patients. J Clin Pharmacol. 2005;45:1294–304.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Robatel C, Decosterd LA, Biollaz J, Eckert P, Schaller MD, Buclin T. Pharmacokinetics and dosage adaptation of meropenem during continuous venovenous hemodiafiltration in critically ill patients. J Clin Pharmacol. 2003;43:1329–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Langgartner J, Vasold A, Glück T, Reng M, Kees F. Pharmacokinetics of meropenem during intermittent and continuous intravenous application in patients treated by continuous renal replacement therapy. Intensive Care Med. 2008;34(6):1091–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giles LJ, Jennings AC, Thompson AH, Creed G, Beale RJ, McLuckie A. Pharmacokinetics of meropenem in intensive care unit patients receiving continuous veno-venous hemofiltration or hemodiafiltration. Crit Care Med. 2000;28:632–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bilgrami I, Roberts JA, Wallis SC, Thomas J, Davis J, Fowler S, et al. Meropenem dosing in critically ill patients with sepsis receiving high-volume continuous venovenous hemofiltration. Antimicrob Agents Chemother. 2010;54(7):2974–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krueger WA, Schroeder TH, Hutchison M, Hoffmann E, Dieterich HJ, Heininger A, et al. Pharmacokinetics of meropenem in critically ill patients with acute renal failure treated by continuous hemodiafiltration. Antimicrob Agents Chemother. 1998;42(9):2421–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Merrem. (meropenem) [package insert]. Wilmington, DE: AstraZeneca Pharmaceuticals, LP.; 2014.

  • Mueller SC, Majcher-Peszynska J, Hickstein H, Francke A, Pertschy A, Schulz M, et al. Pharmacokinetics of piperacillin-tazobactam in anuric intensive care patients during continuous venovenous hemodialysis. Antimicrob Agents Chemother. 2002;46(5):1557–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seyler L, Cotton F, Taccone FS, De Backer D, Macours P, Vincent JL, et al. Recommended β-lactam regimens are inadequate in septic patients treated with continuous renal replacement therapy. Crit Care. 2011;15(3):R137.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bauer SR, Salem C, Connor MJ Jr, Groszek J, Taylor ME, Wei P, et al. Pharmacokinetics and pharmacodynamics of piperacillin-tazobactam in 42 patients treated with concomitant CRRT. Clin J Am Soc Nephrol. 2012;7(3):452–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keller E, Bohler J, Busse-Grawitz A, Reetze-Bonorden P, Krumme B, Schollmeyer P. Single dose kinetics of piperacillin during continuous arteriovenous hemodialysis in intensive care patients. Clin Nephrol. 1995;43(Suppl 1):20–S23.


    Google Scholar
     

  • Jang SM, Gharibian KN, Lewis SJ, Fissell WH, Tolwani AJ, Mueller BA. A Monte Carlo simulation approach for beta-lactam dosing in critically ill patients receiving prolonged intermittent renal replacement therapy. J Clin Pharmacol. 2018;58(10):1254–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmaldienst S, Traunmüller F, Burgmann H, Rosenkranz AR, Thalhammer-Scherrer R, Hörl WH, et al. Multiple-dose pharmacokinetics of cefepime in long-term hemodialysis with high-flux membranes. Eur J Clin Pharmacol. 2000;56(1):61–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barbhaiya RH, Knupp CA, Forgue ST, Matzke GR, Guay DR, Pittman KA. Pharmacokinetics of cefepime in subjects with renal insufficiency. Clin Pharmacol Ther. 1990;48(3):268–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matzke GR, Frye RF, Joy MS, Palevsky PM. Determinants of ceftazidime clearance by continuous venovenous hemofiltration and continuous venovenous hemodialysis. Antimicrob Agents Chemother. 2000;44(6):1639–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verpooten GA, Verbist L, Buntinx AP, Entwistle LA, Jones KH, De Broe ME. The pharmacokinetics of imipenem (thienamycin-formamidine) and the renal dehydropeptidase inhibitor cilastatin sodium in normal subjects and patients with renal failure. Br J Clin Pharmacol. 1984;18(2):183–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Konishi K, Suzuki H, Saruta T, Hayashi M, Deguchi N, Tazaki H, et al. Removal of imipenem and cilastatin by hemodialysis in patients with end-stage renal failure. Antimicrob Agents Chemother. 1991;35(8):1616–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tegeder I, Neumann F, Bremer F, Brune K, Lötsch J, Geisslinger G. Pharmacokinetics of meropenem in critically ill patients with acute renal failure undergoing continuous venovenous hemofiltration. Clin Pharmacol Ther. 1999;65(1):50–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Braune S, König C, Roberts JA, Nierhaus A, Steinmetz O, Baehr M, et al. Pharmacokinetics of meropenem in septic patients on sustained low-efficiency dialysis: a population pharmacokinetic study. Crit Care. 2018;22(1):25.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leroy A, Fillastre JP, Borsa-Lebas F, Etienne I, Humbert G. Pharmacokinetics of meropenem (ICI 194,660) and its metabolite (ICI 213,689) in healthy subjects and in patients with renal impairment. Antimicrob Agents Chemother. 1992;36(12):2794–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Christensson BA, Nilsson-Ehle I, Hutchison M, Haworth SJ, Oqvist B, Norrby SR. Pharmacokinetics of meropenem in subjects with various degrees of renal impairment. Antimicrob Agents Chemother. 1992;36(7):1532–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Donnellan S, Wright DFB, Roberts JA, Duffull SB, Schollum JBW, Putt TL, Wallis SC, Walker RJ. The pharmacokinetics of meropenem and piperacillin-tazobactam during sustained low efficiency haemodiafiltration (SLED-HDF). Eur J Clin Pharmacol. 2020;76(2):239–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rubino CM, Bhavnani SM, Loutit JS, Lohse B, Dudley MN, Griffith DC. Single-dose pharmacokinetics and safety of Meropenem-Vaborbactam in subjects with chronic renal impairment. Antimicrob Agents Chemother. 2018;62(3):e02103–17.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arzuaga A, Isla A, Gascón AR, Maynar J, Corral E, Pedraz JL. Elimination of piperacillin and tazobactam by renal replacement therapies with AN69 and polysulfone hemofilters: evaluation of the sieving coefficient. Blood Purif. 2006;24(4):347–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Varghese JM, Jarrett P, Boots RJ, Kirkpatrick CM, Lipman J, Roberts JA. Pharmacokinetics of piperacillin and tazobactam in plasma and subcutaneous interstitial fluid in critically ill patients receiving continuous venovenous haemodiafiltration. Int J Antimicrob Agents. 2014;43(4):343–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Asín-Prieto E, Rodríguez-Gascón A, Trocóniz IF, Soraluce A, Maynar J, Sánchez-Izquierdo JÁ, et al. Population pharmacokinetics of piperacillin and tazobactam in critically ill patients undergoing continuous renal replacement therapy: application to pharmacokinetic/pharmacodynamic analysis. J Antimicrob Chemother. 2014;69(1):180–9.

    Article 
    PubMed 

    Google Scholar
     

  • Awissi DK, Beauchamp A, Hébert E, Lavigne V, Munoz DL, Lebrun G, et al. Pharmacokinetics of an extended 4-hour infusion of piperacillin-tazobactam in critically ill patients undergoing continuous renal replacement therapy. Pharmacotherapy. 2015;35(6):600–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sinnollareddy MG, Roberts MS, Lipman J, Peake SL, Roberts JA. Pharmacokinetics of piperacillin in critically ill patients with acute kidney injury receiving sustained low-efficiency diafiltration. J Antimicrob Chemother. 2018;73(6):1647–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kanji S, Roberts JA, Xie J, Alobaid A, Zelenitsky S, Hiremath S, et al. Piperacillin population pharmacokinetics in critically ill adults during sustained low-efficiency dialysis. Ann Pharmacother. 2018;52(10):965–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Donnellan S, Wright DFB, Roberts JA, Duffull SB, Schollum JBW, Putt TL, et al. The pharmacokinetics of meropenem and piperacillin-tazobactam during sustained low efficiency haemodiafiltration (SLED-HDF). Eur J Clin Pharmacol. 2020;76(2):239–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heim-Duthoy KL, Halstenson CE, Abraham PA, Matzke GR. The effect of hemodialysis on piperacillin harmacokinetics. Int J Clin Pharmacol Ther Toxicol. 1986;24(12):680–4.

    CAS 
    PubMed 

    Google Scholar
     

  • Johnson CA, Halstenson CE, Kelloway JS, Shapiro BE, Zimmerman SW, Tonelli A, et al. Single-dose pharmacokinetics of piperacillin and tazobactam in patients with renal disease. Clin Pharmacol Ther. 1992;51(1):32–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wooley M, Miller B, Krishna G, Hershberger E, Chandorkar G. Impact of renal function on the pharmacokinetics and safety of ceftolozane-tazobactam. Antimicrob Agents Chemother. 2014;58(4):2249–55.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drusano GL. Antimicrobial pharmacodynamics: critical interactions of ‘bug and drug’. Nat Rev Microbiol. 2004;2(4):289–300.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vogelman B, Gudmundsson S, Leggett J, Turnidge J, Ebert S. CraigWA. Correlation of antimicrobial pharmacokinetic parameters with therapeutic efficacy in an animal model. J Infect Dis. 1988;158(4):831–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tam VH, McKinnon PS, Akins RL, Rybak MJ, Drusano GL. Pharmacodynamics of cefepime in patients with gram-negative infections. J Antimicrob Chemother. 2002;50(3):425–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McKinnon PS, Paladino JA, Schentag JJ. Evaluation of area under the inhibitory curve (AUIC) and time above the minimum inhibitory concentration (T > MIC) as predictors of outcome for cefepime and ceftazidime in serious bacterial infections. Int J Antimicrob Agents. 2008;31(4):345–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guilhaumou R, Benaboud S, Bennis Y, Dahyot-Fizelier C, Dailly E, Gandia P, et al. Optimization of the treatment with beta-lactam antibiotics in critically ill patients-guidelines from the French Society of Pharmacology and Therapeutics (Societe Francaise De Pharmacologie et Therapeutique-SFPT) and the French Society of Anaesthesia and Intensive Care Medicine (Societe Francaise d’Anesthesie et Reanimation-SFAR). Crit Care. 2019;23(1):104.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; M100S. 32th Edition ed. Wayne; 2022.

  • Nicasio AM, VanScoy BD, Mendes RE, Castanheira M, Bulik CC, Okusanya OO, et al. Pharmacokinetics-pharmacodynamics of tazobactam in combination with piperacillin in an in vitro infection model. Antimicrob Agents Chemother. 2016;60(4):2075–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deshayes S, Coquerel A, Verdon R. Neurological adverse effects attributable to beta-lactam antibiotics: a Literature Review. Drug Saf. 2017;40(12):1171–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fugate JE, Kalimullah EA, Hocker SE, Clark SL, Wijdicks EF, Rabinstein AA. Cefepime neurotoxicity in the intensive care unit: a cause of severe, underappreciated encephalopathy. Crit Care. 2013;17(6):R264.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Imani S, Buscher H, Marriott D, Gentili S, Sandaradura I. Too much of a good thing: a retrospective study of beta-lactam concentration-toxicity relationships. J Antimicrob Chemother. 2017;72(10):2891–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lamoth F, Buclin T, Pascual A, Vora S, Bolay S, Decosterd LA, et al. High cefepime plasma concentrations and neurological toxicity in febrile neutropenic patients with mild impairment of renal function. Antimicrob Agents Chemother. 2010;54(10):4360–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huwyler T, Lenggenhager L, Abbas M, Ing Lorenzini K, Hughes S, Huttner B, et al. Cefepime plasma concentrations and clinical toxicity: a retrospective cohort study. Clin Microbiol Infect. 2017;23(7):454–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quinton MC, Bodeau S, Kontar L, Zerbib Y, Maizel J, Slama M et al. Neurotoxic concentration of Piperacillin during continuous infusion in critically ill patients. Antimicrob Agents Chemother 2017;61(9).

  • Cefepime. Lexi-Drugs. Hudson, OH: Lexicomp. 2023. http://online.lexi.com/. Updated September 19, 2023. Accessed October 6, 2023.

  • Ceftazidime. Lexi-Drugs. Hudson, OH: Lexicomp. 2023. http://online.lexi.com/. Updated September 30, 2023. Accessed October 6, 2023.

  • Imipenem. Lexi-Drugs. Hudson, OH: Lexicomp. 2023. http://online.lexi.com/. Updated September 23, 2023. Accessed October 6, 2023.

  • Meropenem. Lexi-Drugs. Hudson, OH: Lexicomp. 2023. http://online.lexi.com/. Updated September 28, 2023. Accessed October 6, 2023.

  • Piperacillin/tazobactam. Lexi-Drugs. Hudson, OH: Lexicomp. 2023. http://online.lexi.com/. Updated October 3, 2023. Accessed October 6, 2023.

  • Beumier M, Casu GS, Hites M, Wolff F, Cotton F, Vincent JL, et al. Elevated β-lactam concentrations associated with neurological deterioration in ICU septic patients. Minerva Anestesiol. 2015;81(5):497–506.

    CAS 
    PubMed 

    Google Scholar
     

  • Fratoni AJ, Nicolau DP, Kuti JL. A guide to therapeutic drug monitoring of β-lactam antibiotics. Pharmacotherapy. 2021;41(2):220–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Venugopalan V, Hamza M, Santevecchi B, DeSear K, Cherabuddi K, Peloquin CA, et al. Implementation of a β-lactam therapeutic drug monitoring program: experience from a large academic medical center. Am J Health Syst Pharm. 2022;79(18):1586–91.

    Article 
    PubMed 

    Google Scholar