Search
Search
Close this search box.

Advancements in understanding the role of intestinal dysbacteriosis mediated mucosal immunity in IgA nephropathy – BMC Nephrology

  • Pattrapornpisut P, Avila-Casado C, Reich HN. IgA Nephropathy: Core Curriculum 2021. Am J Kidney Dis. 2021;78(3):429–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lai KN, Tang SC, Schena FP, Novak J, Tomino Y, Fogo AB, Glassock RJ. IgA nephropathy. Nat Rev Dis Primers. 2016;2:16001.

    Article 
    PubMed 

    Google Scholar
     

  • Schena FP, Nistor I. Epidemiology of IgA Nephropathy: A Global Perspective. Semin Nephrol. 2018;38(5):435–42.

    Article 
    PubMed 

    Google Scholar
     

  • Magistroni R, D’Agati VD, Appel GB, Kiryluk K. New developments in the genetics, pathogenesis, and therapy of IgA nephropathy. Kidney Int. 2015;88(5):974–89.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jarrick S, Lundberg S, Welander A, Carrero JJ, Höijer J, Bottai M, Ludvigsson JF. Mortality in IgA Nephropathy: a Nationwide Population-based Cohort Study. J Am Soc Nephrol. 2019;30(5):866–76.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coppo R, Troyanov S, Bellur S, Cattran D, Cook HT, Feehally J, Roberts IS, Morando L, Camilla R, Tesar V, et al. Validation of the Oxford classification of IgA nephropathy in cohorts with different presentations and treatments. Kidney Int. 2014;86(4):828–36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rollino C, Vischini G, Coppo R. IgA nephropathy and infections. J Nephrol. 2016;29(4):463–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Slavin SF. IgA Nephropathy as the initial presentation of Celiac Disease in an adolescent. Pediatrics 2021, 148(4).

  • Nurmi R, Korponay-Szabó I, Laurila K, Huhtala H, Niemelä O, Mustonen J, Mäkelä S, Kaukinen K, Lindfors K. Celiac Disease-Type tissue transglutaminase Autoantibody deposits in kidney biopsies of patients with IgA nephropathy. Nutrients 2021, 13(5).

  • Habura I, Fiedorowicz K, Woźniak A, Idasiak-Piechocka I, Kosikowski P, Oko A. IgA nephropathy associated with coeliac disease. Cent Eur J Immunol. 2019;44(1):106–8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nurmi R, Pohjonen J, Metso M, Pörsti I, Niemelä O, Huhtala H, Mustonen J, Kaukinen K, Mäkelä S. Prevalence of inflammatory bowel Disease and Celiac Disease in patients with IgA nephropathy over Time. Nephron. 2021;145(1):78–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu L, Khan A, Sanchez-Rodriguez E, Zanoni F, Li Y, Steers N, Balderes O, Zhang J, Krithivasan P, LeDesma RA, et al. Genetic regulation of serum IgA levels and susceptibility to common immune, infectious, kidney, and cardio-metabolic traits. Nat Commun. 2022;13(1):6859.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fassarella M, Blaak EE, Penders J, Nauta A, Smidt H, Zoetendal EG. Gut microbiome stability and resilience: elucidating the response to perturbations in order to modulate gut health. Gut. 2021;70(3):595–605.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Del Chierico F, Rapini N, Deodati A, Matteoli MC, Cianfarani S, Putignani L. Pathophysiology of type 1 diabetes and gut microbiota role. Int J Mol Sci 2022, 23(23).

  • Vatanen T, Franzosa EA, Schwager R, Tripathi S, Arthur TD, Vehik K, Lernmark Å, Hagopian WA, Rewers MJ, She JX, et al. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature. 2018;562(7728):589–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, Fu H, Xue X, Lu C, Ma J, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science. 2018;359(6380):1151–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aron-Wisnewsky J, Warmbrunn MV, Nieuwdorp M, Clément K. Metabolism and metabolic disorders and the Microbiome: the intestinal microbiota Associated with obesity, lipid metabolism, and Metabolic Health-Pathophysiology and therapeutic strategies. Gastroenterology. 2021;160(2):573–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee M, Chang EB. Inflammatory Bowel diseases (IBD) and the Microbiome-searching the crime scene for clues. Gastroenterology. 2021;160(2):524–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nishida A, Inoue R, Inatomi O, Bamba S, Naito Y, Andoh A. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin J Gastroenterol. 2018;11(1):1–10.

    Article 
    PubMed 

    Google Scholar
     

  • Chu H, Khosravi A, Kusumawardhani IP, Kwon AH, Vasconcelos AC, Cunha LD, Mayer AE, Shen Y, Wu WL, Kambal A, et al. Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease. Science. 2016;352(6289):1116–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sepich-Poore GD, Zitvogel L, Straussman R, Hasty J, Wargo JA, Knight R. The microbiome and human cancer. Science 2021, 371(6536).

  • Matson V, Chervin CS, Gajewski TF. Cancer and the Microbiome-Influence of the commensal microbiota on Cancer, Immune responses, and Immunotherapy. Gastroenterology. 2021;160(2):600–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rahman MM, Islam F, Or-Rashid MH, Mamun AA, Rahaman MS, Islam MM, Meem AFK, Sutradhar PR, Mitra S, Mimi AA, et al. The gut microbiota (Microbiome) in Cardiovascular Disease and its therapeutic regulation. Front Cell Infect Microbiol. 2022;12:903570.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herrema H, Nieuwdorp M, Groen AK. Microbiome and Cardiovascular Disease. Handb Exp Pharmacol. 2022;270:311–34.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang H, Ainiwaer A, Song Y, Qin L, Peng A, Bao H, Qin H. Perturbed gut microbiome and fecal and serum metabolomes are associated with chronic kidney disease severity. Microbiome. 2023;11(1):3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li HB, Zhou JL, Xie PP, Feng YT, Chen Y, Zhang DF, Wang DG, Pan HF. Pathogenetic and therapeutic role of gut microbiome in Immunoglobin A Nephropathy. Curr Pharm Des. 2023;29(6):468–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kiyono H, Fukuyama S. NALT- versus Peyer’s-patch-mediated mucosal immunity. Nat Rev Immunol. 2004;4(9):699–710.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bienenstock J, McDermott MR. Bronchus- and nasal-associated lymphoid tissues. Immunol Rev. 2005;206:22–31.

    Article 
    PubMed 

    Google Scholar
     

  • Li G, Yang M, Zhou K, Zhang L, Tian L, Lv S, Jin Y, Qian W, Xiong H, Lin R, et al. Diversity of duodenal and rectal microbiota in Biopsy tissues and Luminal contents in healthy volunteers. J Microbiol Biotechnol. 2015;25(7):1136–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chemouny JM, Gleeson PJ, Abbad L, Lauriero G, Boedec E, Le Roux K, Monot C, Bredel M, Bex-Coudrat J, Sannier A, et al. Modulation of the microbiota by oral antibiotics treats immunoglobulin a nephropathy in humanized mice. Nephrol Dial Transpl. 2019;34(7):1135–44.

    Article 
    CAS 

    Google Scholar
     

  • Mörbe UM, Jørgensen PB, Fenton TM, von Burg N, Riis LB, Spencer J, Agace WW. Human gut-associated lymphoid tissues (GALT); diversity, structure, and function. Mucosal Immunol. 2021;14(4):793–802.

    Article 
    PubMed 

    Google Scholar
     

  • Hand TW, Reboldi A. Production and function of Immunoglobulin A. Annu Rev Immunol. 2021;39:695–718.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gibbons DL, Spencer J. Mouse and human intestinal immunity: same ballpark, different players; different rules, same score. Mucosal Immunol. 2011;4(2):148–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Macpherson AJ, Yilmaz B, Limenitakis JP, Ganal-Vonarburg SC. IgA function in relation to the intestinal microbiota. Annu Rev Immunol. 2018;36:359–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bunker JJ, Bendelac A. IgA responses to Microbiota. Immunity. 2018;49(2):211–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fitzpatrick Z, Frazer G, Ferro A, Clare S, Bouladoux N, Ferdinand J, Tuong ZK, Negro-Demontel ML, Kumar N, Suchanek O, et al. Gut-educated IgA plasma cells defend the meningeal venous sinuses. Nature. 2020;587(7834):472–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cuenca M, Pfister SP, Buschor S, Bayramova F, Hernandez SB, Cava F, Kuru E, Van Nieuwenhze MS, Brun YV, Coelho FM, et al. D-Alanine-controlled transient intestinal mono-colonization with non-laboratory-adapted Commensal E. Coli strain HS. PLoS ONE. 2016;11(3):e0151872.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Talham GL, Jiang HQ, Bos NA, Cebra JJ. Segmented filamentous bacteria are potent stimuli of a physiologically normal state of the murine gut mucosal immune system. Infect Immun. 1999;67(4):1992–2000.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Umesaki Y, Setoyama H, Matsumoto S, Imaoka A, Itoh K. Differential roles of segmented filamentous bacteria and clostridia in development of the intestinal immune system. Infect Immun. 1999;67(7):3504–11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Macpherson AJ, McCoy KD, Johansen FE, Brandtzaeg P. The immune geography of IgA induction and function. Mucosal Immunol. 2008;1(1):11–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee N, Kim WU. Microbiota in T-cell homeostasis and inflammatory diseases. Exp Mol Med. 2017;49(5):e340.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hegazy AN, West NR, Stubbington MJT, Wendt E, Suijker KIM, Datsi A, This S, Danne C, Campion S, Duncan SH, et al. Circulating and tissue-resident CD4(+) T cells with reactivity to intestinal microbiota are abundant in healthy individuals and function is altered during inflammation. Gastroenterology. 2017;153(5):1320–e13371316.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amatya N, Garg AV, Gaffen SL. IL-17 signaling: the Yin and the Yang. Trends Immunol. 2017;38(5):310–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ivanov II, Frutos Rde L, Manel N, Yoshinaga K, Rifkin DB, Sartor RB, Finlay BB, Littman DR. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe. 2008;4(4):337–49.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, Wei D, Goldfarb KC, Santee CA, Lynch SV, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139(3):485–98.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Russler-Germain EV, Rengarajan S, Hsieh CS. Antigen-specific regulatory T-cell responses to intestinal microbiota. Mucosal Immunol. 2017;10(6):1375–86.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruszkowski J, Lisowska KA, Pindel M, Heleniak Z, Dębska-Ślizień A, Witkowski JM. T cells in IgA nephropathy: role in pathogenesis, clinical significance and potential therapeutic target. Clin Exp Nephrol. 2019;23(3):291–303.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Geva-Zatorsky N, Sefik E, Kua L, Pasman L, Tan TG, Ortiz-Lopez A, Yanortsang TB, Yang L, Jupp R, Mathis D, et al. Mining the human gut microbiota for Immunomodulatory organisms. Cell. 2017;168(5):928–e943911.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahern PP, Faith JJ, Gordon JI. Mining the human gut microbiota for effector strains that shape the immune system. Immunity. 2014;40(6):815–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rajasekaran A, Julian BA, Rizk DV. IgA nephropathy: an interesting autoimmune kidney disease. Am J Med Sci. 2021;361(2):176–94.

    Article 
    PubMed 

    Google Scholar
     

  • Soares SM, Lager DJ, Leung N, Haugen EN, Fervenza FC. A proliferative glomerulonephritis secondary to a monoclonal IgA. Am J Kidney Dis. 2006;47(2):342–9.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang J, Chen GD, Qiu J, Liu GC, Chen LZ, Fu K, Wu ZX. Graft failure of IgA nephropathy in renal allografts following living donor transplantation: predictive factor analysis of 102 biopsies. BMC Nephrol. 2019;20(1):446.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Infante B, Rossini M, Di Lorenzo A, Coviello N, Giuseppe C, Gesualdo L, Giuseppe G, Stallone G. Recurrence of immunoglobulin a nephropathy after kidney transplantation: a narrative review of the incidence, risk factors, pathophysiology and management of immunosuppressive therapy. Clin Kidney J. 2020;13(5):758–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yeo SC, Cheung CK, Barratt J. New insights into the pathogenesis of IgA nephropathy. Pediatr Nephrol. 2018;33(5):763–77.

    Article 
    PubMed 

    Google Scholar
     

  • Taliercio JJ, Mehdi A. IgA nephropathy. Cleve Clin J Med. 2023;90(6 suppl 1):e5–8.

    Article 
    PubMed 

    Google Scholar
     

  • Suzuki H, Kiryluk K, Novak J, Moldoveanu Z, Herr AB, Renfrow MB, Wyatt RJ, Scolari F, Mestecky J, Gharavi AG, et al. The pathophysiology of IgA nephropathy. J Am Soc Nephrol. 2011;22(10):1795–803.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barratt J, Feehally J. IgA nephropathy. J Am Soc Nephrol. 2005;16(7):2088–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grossetête B, Launay P, Lehuen A, Jungers P, Bach JF, Monteiro RC. Down-regulation of fc alpha receptors on blood cells of IgA nephropathy patients: evidence for a negative regulatory role of serum IgA. Kidney Int. 1998;53(5):1321–35.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang J, Zhou R, Mi Y, Liu Z, Huang B, Guo R, Wang P, Quan S, Zhou Y. Role of Human Mesangial-Tubular Crosstalk in Secretory IgA-Induced IgA Nephropathy. Kidney Blood Press Res. 2021;46(3):286–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • D’Amico G, Imbasciati E, Barbiano Di Belgioioso G, Bertoli S, Fogazzi G, Ferrario F, Fellin G, Ragni A, Colasanti G, Minetti L, et al. Idiopathic IgA mesangial nephropathy. Clinical and histological study of 374 patients. Med (Baltim). 1985;64(1):49–60.

    Article 

    Google Scholar
     

  • Wang T, Ye F, Meng H, Zhang L, Jin X. Comparison of clinicopathological features between children and adults with IgA nephropathy. Pediatr Nephrol. 2012;27(8):1293–300.

    Article 
    PubMed 

    Google Scholar
     

  • Lee M, Suzuki H, Nihei Y, Matsuzaki K, Suzuki Y. Ethnicity and IgA nephropathy: worldwide differences in epidemiology, timing of diagnosis, clinical manifestations, management and prognosis. Clin Kidney J. 2023;16(Suppl 2):ii1–8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Itoh A, Iwase H, Takatani T, Nakamura I, Hayashi M, Oba K, Hiki Y, Kobayashi Y, Okamoto M. Tonsillar IgA1 as a possible source of hypoglycosylated IgA1 in the serum of IgA nephropathy patients. Nephrol Dial Transpl. 2003;18(6):1108–14.

    Article 
    CAS 

    Google Scholar
     

  • Fujieda S, Suzuki S, Sunaga H, Yamamoto H, Seki M, Sugimoto H, Saito H. Production of interferon-gamma by tonsillar mononuclear cells in IgA nephropathy patients. Acta Otolaryngol. 2000;120(5):649–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamaguchi H, Goto S, Takahashi N, Tsuchida M, Watanabe H, Yamamoto S, Kaneko Y, Higashi K, Mori H, Nakamura Y, et al. Aberrant mucosal immunoreaction to tonsillar microbiota in immunoglobulin A nephropathy. Nephrol Dial Transpl. 2021;36(1):75–86.

    Article 
    CAS 

    Google Scholar
     

  • Feehally J, Coppo R, Troyanov S, Bellur SS, Cattran D, Cook T, Roberts IS, Verhave JC, Camilla R, Vergano L, et al. Tonsillectomy in a European cohort of 1,147 patients with IgA nephropathy. Nephron. 2016;132(1):15–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Enya T, Miyazaki K, Miyazawa T, Oshima R, Morimoto Y, Okada M, Takemura T, Sugimoto K. Early tonsillectomy for severe immunoglobulin a nephropathy significantly reduces proteinuria. Pediatr Int. 2020;62(9):1054–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aratani S, Matsunobu T, Shimizu A, Okubo K, Kashiwagi T, Sakai Y. Tonsillectomy Combined with Steroid Pulse Therapy prevents the progression of chronic kidney disease in patients with immunoglobulin A (IgA) nephropathy in a single Japanese Institution. Cureus. 2021;13(6):e15736.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toda M, Kume A, Hara M, Kimura H, Nakamura Y, Okumura K, Beppu H, Nakamura Y, Ogawa H, Kamei Y, et al. Efficacy and limitations of additional steroid pulse therapy in IgA nephropathy patients whose hematuria did not remit on tonsillectomy and protocol steroid pulse therapy. Clin Exp Nephrol. 2022;26(9):859–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Coppo R. The gut-kidney axis in IgA nephropathy: role of microbiota and diet on genetic predisposition. Pediatr Nephrol. 2018;33(1):53–61.

    Article 
    PubMed 

    Google Scholar
     

  • Haniuda K, Gommerman JL, Reich HN. The microbiome and IgA nephropathy. Semin Immunopathol. 2021;43(5):649–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hase K, Kawano K, Nochi T, Pontes GS, Fukuda S, Ebisawa M, Kadokura K, Tobe T, Fujimura Y, Kawano S, et al. Uptake through glycoprotein 2 of FimH(+) bacteria by M cells initiates mucosal immune response. Nature. 2009;462(7270):226–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kolesnikov M, Curato C, Zupancic E, Florindo H, Shakhar G, Jung S. Intravital visualization of interactions of murine Peyer’s patch-resident dendritic cells with M cells. Eur J Immunol. 2020;50(4):537–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, Liu H, Peng Y, Liu F. New insights into the pathogenesis of IgA nephropathy: do toll like receptor 9-B cell activation factor-IgA class switching recombination signaling axis induce IgA hyper-production? Ren Fail. 2014;36(6):970–3.

    Article 
    PubMed 

    Google Scholar
     

  • Senger K, Hackney J, Payandeh J, Zarrin AA. Antibody isotype switching in vertebrates. Results Probl Cell Differ. 2015;57:295–324.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao J, Wang M, Xiong D, Wang Y, Li Q, Zhou J, Chen Q. TGF-β1 mimics the effect of IL-4 on the glycosylation of IgA1 by downregulating core 1 β1, 3-galactosyltransferase and Cosmc. Mol Med Rep. 2017;15(2):969–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Coppo R. The gut-renal connection in IgA Nephropathy. Semin Nephrol. 2018;38(5):504–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yeo SC, Barratt J. The contribution of a proliferation-inducing ligand (APRIL) and other TNF superfamily members in pathogenesis and progression of IgA nephropathy. Clin Kidney J. 2023;16(Suppl 2):ii9–18.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McClure R, Massari P. TLR-Dependent human mucosal epithelial cell responses to Microbial pathogens. Front Immunol. 2014;5:386.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He JW, Zhou XJ, Lv JC, Zhang H. Perspectives on how mucosal immune responses, infections and gut microbiome shape IgA nephropathy and future therapies. Theranostics. 2020;10(25):11462–78.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCarthy DD, Kujawa J, Wilson C, Papandile A, Poreci U, Porfilio EA, Ward L, Lawson MA, Macpherson AJ, McCoy KD, et al. Mice overexpressing BAFF develop a commensal flora-dependent, IgA-associated nephropathy. J Clin Invest. 2011;121(10):3991–4002.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kiryluk K, Li Y, Scolari F, Sanna-Cherchi S, Choi M, Verbitsky M, Fasel D, Lata S, Prakash S, Shapiro S, et al. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat Genet. 2014;46(11):1187–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin R, Chen H, Shu W, Sun M, Fang L, Shi Y, Pang Z, Wu W, Liu Z. Clinical significance of soluble immunoglobulins a and G and their coated bacteria in feces of patients with inflammatory bowel disease. J Transl Med. 2018;16(1):359.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bamias G, Kitsou K, Rivera-Nieves J. The underappreciated role of secretory IgA in IBD. Inflamm Bowel Dis. 2023;29(8):1327–41.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ambruzs JM, Walker PD, Larsen CP. The histopathologic spectrum of kidney biopsies in patients with inflammatory bowel disease. Clin J Am Soc Nephrol. 2014;9(2):265–70.

    Article 
    PubMed 

    Google Scholar
     

  • Lian X, Wang Y, Wang S, Peng X, Wang Y, Huang Y, Chen W. Does inflammatory bowel disease promote kidney diseases: a mendelian randomization study with populations of European ancestry. BMC Med Genomics. 2023;16(1):225.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Helin H, Mustonen J, Reunala T, Pasternack A. IgA nephropathy associated with celiac disease and dermatitis herpetiformis. Arch Pathol Lab Med. 1983;107(6):324–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Coppo R, Mazzucco G, Martina G, Roccatello D, Amore A, Novara R, Bargoni A, Piccoli G, Sena LM. Gluten-induced experimental IgA glomerulopathy. Lab Invest. 1989;60(4):499–506.

    CAS 
    PubMed 

    Google Scholar
     

  • Papista C, Lechner S, Ben Mkaddem S, LeStang MB, Abbad L, Bex-Coudrat J, Pillebout E, Chemouny JM, Jablonski M, Flamant M, et al. Gluten exacerbates IgA nephropathy in humanized mice through gliadin-CD89 interaction. Kidney Int. 2015;88(2):276–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fasano A. All disease begins in the (leaky) gut: role of zonulin-mediated gut permeability in the pathogenesis of some chronic inflammatory diseases. F1000Res 2020, 9.

  • Gesualdo L, Di Leo V, Coppo R. The mucosal immune system and IgA nephropathy. Semin Immunopathol. 2021;43(5):657–68.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nurmi R, Metso M, Pörsti I, Niemelä O, Huhtala H, Mustonen J, Kaukinen K, Mäkelä S. Celiac disease or positive tissue transglutaminase antibodies in patients undergoing renal biopsies. Dig Liver Dis. 2018;50(1):27–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moeller S, Canetta PA, Taylor AK, Arguelles-Grande C, Snyder H, Green PH, Kiryluk K, Alaedini A. Lack of serologic evidence to link IgA nephropathy with celiac disease or immune reactivity to gluten. PLoS ONE. 2014;9(4):e94677.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abbad L, Monteiro RC, Berthelot L. Food antigens and Transglutaminase 2 in IgA nephropathy: molecular links between gut and kidney. Mol Immunol. 2020;121:1–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Angelis M, Montemurno E, Piccolo M, Vannini L, Lauriero G, Maranzano V, Gozzi G, Serrazanetti D, Dalfino G, Gobbetti M, et al. Microbiota and metabolome associated with immunoglobulin A nephropathy (IgAN). PLoS ONE. 2014;9(6):e99006.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu X, Du J, Xie Y, Huang Q, Xiao Y, Chen J, Yan S, Gong Z, Ouyang S. Fecal microbiota characteristics of Chinese patients with primary IgA nephropathy: a cross-sectional study. BMC Nephrol. 2020;21(1):97.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jernberg C, Löfmark S, Edlund C, Jansson JK. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiol (Reading). 2010;156(Pt 11):3216–23.

    Article 
    CAS 

    Google Scholar
     

  • López-Gómez L, Alcorta A, Abalo R. Probiotics and probiotic-like agents against Chemotherapy-Induced Intestinal mucositis: a narrative review. J Pers Med 2023, 13(10).

  • Duncan SH, Iyer A, Russell WR. Impact of protein on the composition and metabolism of the human gut microbiota and health. Proc Nutr Soc. 2021;80(2):173–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu S, Bhat ZF, Gounder RS, Mohamed Ahmed IA, Al-Juhaimi FY, Ding Y, Bekhit AEA. Effect of Dietary Protein and Processing on Gut Microbiota-A systematic review. Nutrients 2022, 14(3).

  • Lopetuso LR, Scaldaferri F, Petito V, Gasbarrini A. Commensal Clostridia: leading players in the maintenance of gut homeostasis. Gut Pathog. 2013;5(1):23.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong R, Bai M, Zhao J, Wang D, Ning X, Sun S. A comparative study of the Gut Microbiota Associated with Immunoglobulin a Nephropathy and Membranous Nephropathy. Front Cell Infect Microbiol. 2020;10:557368.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eberl C, Weiss AS, Jochum LM, Durai Raj AC, Ring D, Hussain S, Herp S, Meng C, Kleigrewe K, Gigl M, et al. E. Coli enhance colonization resistance against Salmonella Typhimurium by competing for galactitol, a context-dependent limiting carbon source. Cell Host Microbe. 2021;29(11):1680–e16921687.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ballén V, Cepas V, Ratia C, Gabasa Y, Soto SM. Clinical Escherichia coli: from Biofilm formation to New Antibiofilm Strategies. Microorganisms 2022, 10(6).

  • Olvera-Rosales LB, Cruz-Guerrero AE, Ramírez-Moreno E, Quintero-Lira A, Contreras-López E, Jaimez-Ordaz J, Castañeda-Ovando A, Añorve-Morga J, Calderón-Ramos ZG, Arias-Rico J et al. Impact of the gut microbiota balance on the Health-Disease relationship: the importance of consuming Probiotics and Prebiotics. Foods 2021, 10(6).

  • Zhong Z, Tan J, Tan L, Tang Y, Qiu Z, Pei G, Qin W. Modifications of gut microbiota are associated with the severity of IgA nephropathy in the Chinese population. Int Immunopharmacol. 2020;89(Pt B):107085.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao J, Bai M, Ning X, Qin Y, Wang Y, Yu Z, Dong R, Zhang Y, Sun S. Expansion of Escherichia-Shigella in Gut is Associated with the onset and response to immunosuppressive therapy of IgA Nephropathy. J Am Soc Nephrol. 2022;33(12):2276–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang Y, Xiao Y, He H, Zhu Y, Sun W, Hu P, Xu X, Liu Z, Yan Z, Wei M. Aberrant gut Microbiome contributes to barrier dysfunction, inflammation, and local Immune responses in IgA Nephropathy. Kidney Blood Press Res. 2023;48(1):261–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhargava S, Merckelbach E, Noels H, Vohra A, Jankowski J. Homeostasis in the gut microbiota in chronic kidney disease. Toxins (Basel) 2022, 14(10).

  • Wehedy E, Shatat IF, Al Khodor S. The human microbiome in chronic kidney disease: a double-edged Sword. Front Med (Lausanne). 2021;8:790783.

    Article 
    PubMed 

    Google Scholar
     

  • Wang F, Li N, Ni S, Min Y, Wei K, Sun H, Fu Y, Liu Y, Lv D. The effects of specific gut microbiota and metabolites on IgA nephropathy-based on mendelian randomization and clinical validation. Nutrients 2023, 15(10).

  • Gleeson PJ, Benech N, Chemouny J, Metallinou E, Berthelot L, da Silva J, Bex-Coudrat J, Boedec E, Canesi F, Bounaix C, et al. The gut microbiota posttranslationally modifies IgA1 in autoimmune glomerulonephritis. Sci Transl Med. 2024;16(740):eadl6149.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gubatan J, Holman DR, Puntasecca CJ, Polevoi D, Rubin SJ, Rogalla S. Antimicrobial peptides and the gut microbiome in inflammatory bowel disease. World J Gastroenterol. 2021;27(43):7402–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin JR, Wen J, Zhang H, Wang L, Gou FF, Yang M, Fan JM. Interleukin-17 promotes the production of underglycosylated IgA1 in DAKIKI cells. Ren Fail. 2018;40(1):60–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu Y, He H, Sun W, Wu J, Xiao Y, Peng Y, Hu P, Jin M, Liu P, Zhang D et al. IgA nephropathy: gut microbiome regulates the production of hypoglycosilated IgA1via the TLR4 signaling pathway. Nephrol Dial Transpl 2024.

  • Infante B, Rossini M, Leo S, Troise D, Netti GS, Ranieri E, Gesualdo L, Castellano G, Stallone G. Recurrent glomerulonephritis after renal transplantation: the clinical problem. Int J Mol Sci 2020, 21(17).

  • Jäger C, Stampf S, Molyneux K, Barratt J, Golshayan D, Hadaya K, Huynh-Do U, Binet FI, Mueller TF, Koller M, et al. Recurrence of IgA nephropathy after kidney transplantation: experience from the Swiss transplant cohort study. BMC Nephrol. 2022;23(1):178.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ortiz F, Gelpi R, Koskinen P, Manonelles A, Räisänen-Sokolowski A, Carrera M, Honkanen E, Grinyó JM, Cruzado JM. IgA nephropathy recurs early in the graft when assessed by protocol biopsy. Nephrol Dial Transpl. 2012;27(6):2553–8.

    Article 
    CAS 

    Google Scholar
     

  • Moroni G, Belingheri M, Frontini G, Tamborini F, Messa P. Immunoglobulin A nephropathy. Recurrence after renal transplantation. Front Immunol. 2019;10:1332.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allen PJ, Chadban SJ, Craig JC, Lim WH, Allen RDM, Clayton PA, Teixeira-Pinto A, Wong G. Recurrent glomerulonephritis after kidney transplantation: risk factors and allograft outcomes. Kidney Int. 2017;92(2):461–9.

    Article 
    PubMed 

    Google Scholar
     

  • Ardalan M, Vahed SZ. Gut microbiota and renal transplant outcome. Biomed Pharmacother. 2017;90:229–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Knauf F, Brewer JR, Flavell RA. Immunity, microbiota and kidney disease. Nat Rev Nephrol. 2019;15(5):263–74.

    Article 
    PubMed 

    Google Scholar
     

  • Xiao J, Peng Z, Liao Y, Sun H, Chen W, Chen X, Wei Z, Yang C, Nüssler AK, Liu J, et al. Organ transplantation and gut microbiota: current reviews and future challenges. Am J Transl Res. 2018;10(11):3330–44.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanangat S. Modulation of alloimmune response by commensal gut microbiota and potential new avenues to influence the outcome of allogeneic transplantation by modification of the ‘gut culture’. Int J Immunogenet. 2017;44(1):1–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sivaraj S, Chan A, Pasini E, Chen E, Lawendy B, Verna E, Watt K, Bhat M. Enteric dysbiosis in liver and kidney transplant recipients: a systematic review. Transpl Int. 2020;33(10):1163–76.

    Article 
    PubMed 

    Google Scholar
     

  • Chan S, Hawley CM, Campbell KL, Morrison M, Campbell SB, Isbel NM, Francis RS, Playford EG, Johnson DW. Transplant associated infections-the role of the gastrointestinal microbiota and potential therapeutic options. Nephrol (Carlton). 2020;25(1):5–13.

    Article 

    Google Scholar
     

  • Wu H, Singer J, Kwan TK, Loh YW, Wang C, Tan J, Li YJ, Lai SWC, Macia L, Alexander SI, et al. Gut microbial metabolites induce donor-specific tolerance of kidney allografts through Induction of T Regulatory Cells by short-chain fatty acids. J Am Soc Nephrol. 2020;31(7):1445–61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakamura K, Kageyama S, Ito T, Hirao H, Kadono K, Aziz A, Dery KJ, Everly MJ, Taura K, Uemoto S, et al. Antibiotic pretreatment alleviates liver transplant damage in mice and humans. J Clin Invest. 2019;129(8):3420–34.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fricke WF, Maddox C, Song Y, Bromberg JS. Human microbiota characterization in the course of renal transplantation. Am J Transpl. 2014;14(2):416–27.

    Article 
    CAS 

    Google Scholar
     

  • Zaza G, Dalla Gassa A, Felis G, Granata S, Torriani S, Lupo A. Impact of maintenance immunosuppressive therapy on the fecal microbiome of renal transplant recipients: comparison between an everolimus- and a standard tacrolimus-based regimen. PLoS ONE. 2017;12(5):e0178228.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sampaio S, Araujo R, Merino-Riba A, Lelouvier B, Servant F, Quelhas-Santos J, Pestana M, Sampaio-Maia B. Blood, gut, and oral microbiome in kidney transplant recipients. Indian J Nephrol. 2023;33(5):366–70.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shah NB, Nigwekar SU, Kalim S, Lelouvier B, Servant F, Dalal M, Krinsky S, Fasano A, Tolkoff-Rubin N, Allegretti AS. The gut and blood microbiome in IgA Nephropathy and healthy controls. Kidney360. 2021;2(8):1261–74.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang X, Zhang S, Zhang D, Hu L, Zhang L, Peng Y, Xu Y, Hou H, Zou C, Liu X, et al. Metagenomics-based systematic analysis reveals that gut microbiota Gd-IgA1-associated enzymes may play a key role in IgA nephropathy. Front Mol Biosci. 2022;9:970723.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chai L, Luo Q, Cai K, Wang K, Xu B. Reduced fecal short-chain fatty acids levels and the relationship with gut microbiota in IgA nephropathy. BMC Nephrol. 2021;22(1):209.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang Y, Zhu Y, He H, Peng Y, Hu P, Wu J, Sun W, Liu P, Xiao Y, Xu X, et al. Gut dysbiosis and intestinal barrier dysfunction promotes IgA nephropathy by increasing the production of Gd-IgA1. Front Med (Lausanne). 2022;9:944027.

    Article 
    PubMed 

    Google Scholar
     

  • Stojanov S, Berlec A, Štrukelj B. The influence of Probiotics on the Firmicutes/Bacteroidetes ratio in the Treatment of Obesity and inflammatory bowel disease. Microorganisms 2020, 8(11).

  • Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R, Goodman AL. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature. 2019;570(7762):462–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barraclough KA, Staatz CE, Isbel NM, Johnson DW. Therapeutic monitoring of mycophenolate in transplantation: is it justified? Curr Drug Metab. 2009;10(2):179–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Flannigan KL, Taylor MR, Pereira SK, Rodriguez-Arguello J, Moffat AW, Alston L, Wang X, Poon KK, Beck PL, Rioux KP, et al. An intact microbiota is required for the gastrointestinal toxicity of the immunosuppressant mycophenolate mofetil. J Heart Lung Transpl. 2018;37(9):1047–59.

    Article 

    Google Scholar
     

  • Taylor MR, Flannigan KL, Rahim H, Mohamud A, Lewis IA, Hirota SA, Greenway SC. Vancomycin relieves mycophenolate mofetil-induced gastrointestinal toxicity by eliminating gut bacterial β-glucuronidase activity. Sci Adv. 2019;5(8):eaax2358.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mühlberg E, Umstätter F, Kleist C, Domhan C, Mier W, Uhl P. Renaissance of Vancomycin: approaches for breaking antibiotic resistance in multidrug-resistant bacteria. Can J Microbiol. 2020;66(1):11–6.

    Article 
    PubMed 

    Google Scholar
     

  • Simpson JB, Sekela JJ, Graboski AL, Borlandelli VB, Bivins MM, Barker NK, Sorgen AA, Mordant AL, Johnson RL, Bhatt AP, et al. Metagenomics combined with activity-based proteomics point to gut bacterial enzymes that reactivate mycophenolate. Gut Microbes. 2022;14(1):2107289.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Degraeve AL, Bindels LB, Haufroid V, Moudio S, Boland L, Delongie KA, Dewulf JP, Eddour DC, Mourad M, Elens L. Tacrolimus Pharmacokinetics is Associated with gut microbiota diversity in kidney transplant patients: results from a pilot cross-sectional study. Clin Pharmacol Ther. 2024;115(1):104–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Provenzani A, Santeusanio A, Mathis E, Notarbartolo M, Labbozzetta M, Poma P, Provenzani A, Polidori C, Vizzini G, Polidori P, et al. Pharmacogenetic considerations for optimizing tacrolimus dosing in liver and kidney transplant patients. World J Gastroenterol. 2013;19(48):9156–73.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toral M, Romero M, Rodríguez-Nogales A, Jiménez R, Robles-Vera I, Algieri F, Chueca-Porcuna N, Sánchez M, de la Visitación N, Olivares M, et al. Lactobacillus fermentum improves Tacrolimus-Induced hypertension by Restoring Vascular Redox State and improving eNOS coupling. Mol Nutr Food Res. 2018;62(14):e1800033.

    Article 
    PubMed 

    Google Scholar
     

  • Jiang JW, Ren ZG, Lu HF, Zhang H, Li A, Cui GY, Jia JJ, Xie HY, Chen XH, He Y, et al. Optimal immunosuppressor induces stable gut microbiota after liver transplantation. World J Gastroenterol. 2018;24(34):3871–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chua JCM, Mount PF, Lee D. Lower versus higher starting tacrolimus dosing in kidney transplant recipients. Clin Transpl. 2022;36(6):e14606.

    Article 
    CAS 

    Google Scholar
     

  • Stumpf J, Budde K, Witzke O, Sommerer C, Vogel T, Schenker P, Woitas RP, Opgenoorth M, Trips E, Schrezenmeier E et al. Fixed low dose versus concentration-controlled initial tacrolimus dosing with reduced target levels in the course after kidney transplantation: results from a prospective randomized controlled non-inferiority trial (Slow & Low study). EClinicalMedicine 2024, 67:102381.

  • Li P, Zhang R, Zhou J, Guo P, Liu Y, Shi S. Vancomycin relieves tacrolimus-induced hyperglycemia by eliminating gut bacterial beta-glucuronidase enzyme activity. Gut Microbes. 2024;16(1):2310277.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Di Leo V, Gleeson PJ, Sallustio F, Bounaix C, Da Silva J, Loreto G, Ben Mkaddem S, Monteiro RC. Rifaximin as a potential treatment for IgA Nephropathy in a Humanized mice Model. J Pers Med 2021, 11(4).

  • Schrodt C, McHugh EE, Gawinowicz MA, Dupont HL, Brown EL. Rifaximin-mediated changes to the epithelial cell proteome: 2-D gel analysis. PLoS ONE. 2013;8(7):e68550.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schwab M, Schaeffeler E, Marx C, Fromm MF, Kaskas B, Metzler J, Stange E, Herfarth H, Schoelmerich J, Gregor M, et al. Association between the C3435T MDR1 gene polymorphism and susceptibility for ulcerative colitis. Gastroenterology. 2003;124(1):26–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun L, Sun Z, Wang Q, Zhang Y, Jia Z. Role of nuclear receptor PXR in immune cells and inflammatory diseases. Front Immunol. 2022;13:969399.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ting SY, Martínez-García E, Huang S, Bertolli SK, Kelly KA, Cutler KJ, Su ED, Zhi H, Tang Q, Radey MC, et al. Targeted depletion of Bacteria from mixed populations by programmable adhesion with antagonistic competitor cells. Cell Host Microbe. 2020;28(2):313–e321316.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat Rev Gastroenterol Hepatol. 2019;16(10):605–16.

    Article 
    PubMed 

    Google Scholar
     

  • Vitetta L, Vitetta G, Hall S. Immunological tolerance and function: associations between intestinal Bacteria, Probiotics, Prebiotics, and phages. Front Immunol. 2018;9:2240.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoesl CE, Altwein JE. The probiotic approach: an alternative treatment option in urology. Eur Urol. 2005;47(3):288–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soylu A, Berktaş S, Sarioğlu S, Erbil G, Yilmaz O, Demir BK, Tufan Y, Yeşilirmak D, Türkmen M, Kavukçu S. Saccharomyces boulardii prevents oral-poliovirus vaccine-induced IgA nephropathy in mice. Pediatr Nephrol. 2008;23(8):1287–91.

    Article 
    PubMed 

    Google Scholar
     

  • Piqué N, Berlanga M, Miñana-Galbis D. Health benefits of heat-killed (Tyndallized) Probiotics: an overview. Int J Mol Sci 2019, 20(10).

  • Huang J, Pearson JA, Peng J, Hu Y, Sha S, Xing Y, Huang G, Li X, Hu F, Xie Z et al. Gut microbial metabolites alter IgA immunity in type 1 diabetes. JCI Insight 2020, 5(10).

  • Tan J, Dong L, Jiang Z, Tan L, Luo X, Pei G, Qin A, Zhong Z, Liu X, Tang Y, et al. Probiotics ameliorate IgA nephropathy by improving gut dysbiosis and blunting NLRP3 signaling. J Transl Med. 2022;20(1):382.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doron S, Snydman DR. Risk and safety of probiotics. Clin Infect Dis. 2015;60(Suppl 2):S129–134.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suez J, Zmora N, Segal E, Elinav E. The pros, cons, and many unknowns of probiotics. Nat Med. 2019;25(5):716–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martinez GP, Zabaleta ME, Di Giulio C, Charris JE, Mijares MR. The role of Chloroquine and Hydroxychloroquine in Immune Regulation and diseases. Curr Pharm Des. 2020;26(35):4467–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gutiérrez E, Carvaca-Fontán F, Luzardo L, Morales E, Alonso M, Praga M. A personalized update on IgA Nephropathy: a New Vision and New Future challenges. Nephron. 2020;144(11):555–71.

    Article 
    PubMed 

    Google Scholar
     

  • Rovin BH, Adler SG, Barratt J, Bridoux F, Burdge KA, Chan TM, Cook HT, Fervenza FC, Gibson KL, Glassock RJ, et al. Executive summary of the KDIGO 2021 Guideline for the management of glomerular diseases. Kidney Int. 2021;100(4):753–79.

    Article 
    PubMed 

    Google Scholar
     

  • Le W, Liang S, Hu Y, Deng K, Bao H, Zeng C, Liu Z. Long-term renal survival and related risk factors in patients with IgA nephropathy: results from a cohort of 1155 cases in a Chinese adult population. Nephrol Dial Transpl. 2012;27(4):1479–85.

    Article 
    CAS 

    Google Scholar
     

  • Zhang J, Lu X, Feng J, Li H, Wang S. Effects of Hydroxychloroquine on Proteinuria in IgA Nephropathy: A Systematic Review and Meta-Analysis. Biomed Res Int 2021, 2021:9171715.

  • Liu LJ, Yang YZ, Shi SF, Bao YF, Yang C, Zhu SN, Sui GL, Chen YQ, Lv JC, Zhang H. Effects of Hydroxychloroquine on Proteinuria in IgA Nephropathy: a Randomized Controlled Trial. Am J Kidney Dis. 2019;74(1):15–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang C, Lv JC, Shi SF, Chen YQ, Liu LJ, Zhang H. Long-term safety and efficacy of hydroxychloroquine in patients with IgA nephropathy: a single-center experience. J Nephrol. 2022;35(2):429–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bibbò S, Settanni CR, Porcari S, Bocchino E, Ianiro G, Cammarota G, Gasbarrini A. Fecal microbiota transplantation: screening and selection to choose the Optimal Donor. J Clin Med 2020, 9(6).

  • Barba C, Soulage CO, Caggiano G, Glorieux G, Fouque D, Koppe L. Effects of fecal microbiota transplantation on composition in mice with CKD. Toxins (Basel) 2020, 12(12).

  • Lauriero G, Abbad L, Vacca M, Celano G, Chemouny JM, Calasso M, Berthelot L, Gesualdo L, De Angelis M, Monteiro RC. Fecal microbiota transplantation modulates renal phenotype in the Humanized Mouse Model of IgA Nephropathy. Front Immunol. 2021;12:694787.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao J, Bai M, Yang X, Wang Y, Li R, Sun S. Alleviation of refractory IgA nephropathy by intensive fecal microbiota transplantation: the first case reports. Ren Fail. 2021;43(1):928–33.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhi W, Song W, Abdi Saed Y, Wang Y, Li Y. Fecal Capsule as a therapeutic strategy in IgA Nephropathy: a brief report. Front Med (Lausanne). 2022;9:914250.

    Article 
    PubMed 

    Google Scholar
     

  • Vecchio M, Bonerba B, Palmer SC, Craig JC, Ruospo M, Samuels JA, Molony DA, Schena FP, Strippoli GF. Immunosuppressive agents for treating IgA nephropathy. Cochrane Database Syst Rev 2015(8):Cd003965.

  • Natale P, Palmer SC, Ruospo M, Saglimbene VM, Craig JC, Vecchio M, Samuels JA, Molony DA, Schena FP, Strippoli GF. Immunosuppressive agents for treating IgA nephropathy. Cochrane Database Syst Rev. 2020;3(3):Cd003965.

    PubMed 

    Google Scholar
     

  • Nader N, Chrousos GP, Kino T. Interactions of the circadian CLOCK system and the HPA axis. Trends Endocrinol Metab. 2010;21(5):277–86.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thaiss CA, Zeevi D, Levy M, Zilberman-Schapira G, Suez J, Tengeler AC, Abramson L, Katz MN, Korem T, Zmora N, et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell. 2014;159(3):514–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leone V, Gibbons SM, Martinez K, Hutchison AL, Huang EY, Cham CM, Pierre JF, Heneghan AF, Nadimpalli A, Hubert N, et al. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe. 2015;17(5):681–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu T, Yang L, Jiang J, Ni Y, Zhu J, Zheng X, Wang Q, Lu X, Fu Z. Chronic glucocorticoid treatment induced circadian clock disorder leads to lipid metabolism and gut microbiota alterations in rats. Life Sci. 2018;192:173–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Woods CP, Hazlehurst JM, Tomlinson JW. Glucocorticoids and non-alcoholic fatty liver disease. J Steroid Biochem Mol Biol. 2015;154:94–103.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tourret J, Willing BP, Dion S, MacPherson J, Denamur E, Finlay BB. Immunosuppressive treatment alters secretion of Ileal antimicrobial peptides and gut microbiota, and favors subsequent colonization by Uropathogenic Escherichia coli. Transplantation. 2017;101(1):74–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liévin-Le Moal V, Servin AL. The front line of enteric host defense against unwelcome intrusion of harmful microorganisms: mucins, antimicrobial peptides, and microbiota. Clin Microbiol Rev. 2006;19(2):315–37.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dharmani P, Srivastava V, Kissoon-Singh V, Chadee K. Role of intestinal mucins in innate host defense mechanisms against pathogens. J Innate Immun. 2009;1(2):123–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang EY, Inoue T, Leone VA, Dalal S, Touw K, Wang Y, Musch MW, Theriault B, Higuchi K, Donovan S, et al. Using corticosteroids to reshape the gut microbiome: implications for inflammatory bowel diseases. Inflamm Bowel Dis. 2015;21(5):963–72.

    Article 
    PubMed 

    Google Scholar
     

  • Seikrit C, Schimpf JI, Wied S, Stamellou E, Izcue A, Pabst O, Rauen T, Lenaerts K, Floege J. Intestinal permeability in patients with IgA nephropathy and other glomerular diseases: an observational study. J Nephrol. 2023;36(2):463–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tena-Garitaonaindia M, Arredondo-Amador M, Mascaraque C, Asensio M, Marin JJG, Martínez-Augustin O. Sánchez De Medina F: modulation of intestinal barrier function by glucocorticoids: lessons from preclinical models. Pharmacol Res. 2022;177:106056.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Coppo R. A disease-modifying approach to the treatment of IgA nephropathy targeting mucosal IgA synthesis and beyond. Kidney Int. 2023;103(2):258–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fellström BC, Barratt J, Cook H, Coppo R, Feehally J, de Fijter JW, Floege J, Hetzel G, Jardine AG, Locatelli F, et al. Targeted-release budesonide versus placebo in patients with IgA nephropathy (NEFIGAN): a double-blind, randomised, placebo-controlled phase 2b trial. Lancet. 2017;389(10084):2117–27.

    Article 
    PubMed 

    Google Scholar
     

  • Barratt J, Lafayette R, Kristensen J, Stone A, Cattran D, Floege J, Tesar V, Trimarchi H, Zhang H, Eren N, et al. Results from part A of the multi-center, double-blind, randomized, placebo-controlled NefIgArd trial, which evaluated targeted-release formulation of budesonide for the treatment of primary immunoglobulin a nephropathy. Kidney Int. 2023;103(2):391–402.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lafayette R, Kristensen J, Stone A, Floege J, Tesař V, Trimarchi H, Zhang H, Eren N, Paliege A, Reich HN, et al. Efficacy and safety of a targeted-release formulation of budesonide in patients with primary IgA nephropathy (NefIgArd): 2-year results from a randomised phase 3 trial. Lancet. 2023;402(10405):859–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krebs CF, Schmidt T, Riedel JH, Panzer U. T helper type 17 cells in immune-mediated glomerular disease. Nat Rev Nephrol. 2017;13(10):647–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao M, Ran Y, Shao J, Lei Z, Chen Y, Li Y. Causal association between inflammatory bowel disease and IgA nephropathy: a bidirectional two-sample mendelian randomization study. Front Genet. 2022;13:1002928.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fauny M, Moulin D, D’Amico F, Netter P, Petitpain N, Arnone D, Jouzeau JY, Loeuille D, Peyrin-Biroulet L. Paradoxical gastrointestinal effects of interleukin-17 blockers. Ann Rheum Dis. 2020;79(9):1132–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ochi M, Toyama T, Ando M, Sato K, Kamikawa Y, Sagara A, Kitajima S, Hara A, Iwata Y, Sakai N, et al. A case of secondary IgA nephropathy accompanied by psoriasis treated with secukinumab. CEN Case Rep. 2019;8(3):200–4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosendahl A, Kabiri R, Bode M, Cai A, Klinge S, Ehmke H, Mittrücker HW, Wenzel UO. Adaptive immunity and IL-17A are not involved in the progression of chronic kidney disease after 5/6 nephrectomy in mice. Br J Pharmacol. 2019;176(12):2002–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uriol-Rivera MG, Obrador-Mulet A, Juliá MR, Daza-Cajigal V, Delgado-Sanchez O, Garcia Alvarez A, Gomez-Lobon A, Carrillo-Garcia P, Saus-Sarrias C, Gómez-Cobo C, et al. Sequential administration of paricalcitol followed by IL-17 blockade for progressive refractory IgA nephropathy patients. Sci Rep. 2024;14(1):4866.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maixnerova D, Tesar V. Emerging role of monoclonal antibodies in the treatment of IgA nephropathy. Expert Opin Biol Ther. 2023;23(5):419–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barratt J, Tumlin J, Suzuki Y, Kao A, Aydemir A, Pudota K, Jin H, Gühring H, Appel G. Randomized Phase II JANUS Study of Atacicept in patients with IgA nephropathy and persistent Proteinuria. Kidney Int Rep. 2022;7(8):1831–41.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lafayette R, Barbour S, Israni R, Wei X, Eren N, Floege J, Jha V, Kim SG, Maes B, Phoon RKS et al. A phase 2b, randomized, double-blind, placebo-controlled, clinical trial of atacicept for treatment of IgA nephropathy. Kidney Int 2024.

  • Mathur M, Barratt J, Suzuki Y, Engler F, Pasetti MF, Yarbrough J, Sloan S, Oldach D. Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of VIS649 (Sibeprenlimab), an APRIL-Neutralizing IgG(2) monoclonal antibody, in healthy volunteers. Kidney Int Rep. 2022;7(5):993–1003.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mathur M, Barratt J, Chacko B, Chan TM, Kooienga L, Oh KH, Sahay M, Suzuki Y, Wong MG, Yarbrough J, et al. A phase 2 trial of Sibeprenlimab in patients with IgA nephropathy. N Engl J Med. 2024;390(1):20–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cantero-Navarro E, Fernández-Fernández B, Ramos AM, Rayego-Mateos S, Rodrigues-Diez RR, Sánchez-Niño MD, Sanz AB, Ruiz-Ortega M, Ortiz A. Renin-angiotensin system and inflammation update. Mol Cell Endocrinol. 2021;529:111254.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kedzierski RM, Yanagisawa M. Endothelin system: the double-edged sword in health and disease. Annu Rev Pharmacol Toxicol. 2001;41:851–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trachtman H, Komers R, Inrig J. Sparsentan: the first and only non-immunosuppressive therapy for the reduction of proteinuria in IgA nephropathy. Expert Rev Clin Immunol 2024:1–6.

  • Chiu AW, Bredenkamp N. Sparsentan: A First-in-class dual endothelin and angiotensin II receptor antagonist. Ann Pharmacother 2023:10600280231198925.

  • Nagasawa H, Ueda S, Suzuki H, Jenkinson C, Fukao Y, Nakayama M, Otsuka T, Okuma T, Clapper W, Liu K et al. Sparsentan is superior to losartan in the gddY mouse model of IgA nephropathy. Nephrol Dial Transpl 2024.

  • Reily C, Moldoveanu Z, Pramparo T, Hall S, Huang ZQ, Rice T, Novak L, Komers R, Jenkinson CP, Novak J. Sparsentan ameliorates glomerular hypercellularity and inflammatory-gene networks induced by IgA1-IgG immune complexes in a mouse model of IgA nephropathy. Am J Physiol Ren Physiol. 2024;326(5):F862–75.

    Article 

    Google Scholar
     

  • Heerspink HJL, Radhakrishnan J, Alpers CE, Barratt J, Bieler S, Diva U, Inrig J, Komers R, Mercer A, Noronha IL, et al. Sparsentan in patients with IgA nephropathy: a prespecified interim analysis from a randomised, double-blind, active-controlled clinical trial. Lancet. 2023;401(10388):1584–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rovin BH, Barratt J, Heerspink HJL, Alpers CE, Bieler S, Chae DW, Diva UA, Floege J, Gesualdo L, Inrig JK, et al. Efficacy and safety of sparsentan versus irbesartan in patients with IgA nephropathy (PROTECT): 2-year results from a randomised, active-controlled, phase 3 trial. Lancet. 2023;402(10417):2077–90.

    Article 
    CAS 
    PubMed 

    Google Scholar