Search
Search
Close this search box.

A simple protocol to establish a conditionally immortalized mouse podocyte cell line – Scientific Reports

  • Mundel, P. & Kriz, W. Structure and function of podocytes: An update. Anat Embryol (Berl). 192(5), 385–397. https://doi.org/10.1007/BF00240371 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haraldsson, B., Nyström, J. & Deen, W. M. Properties of the glomerular barrier and mechanisms of proteinuria. Physiol. Rev. 88(2), 451–487. https://doi.org/10.1152/physrev.00055.2006 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nagata, M. Podocyte injury and its consequences. Kidney Int. 89(6), 1221–1230. https://doi.org/10.1016/j.kint.2016.01.012 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tagawa, A. et al. Impaired podocyte autophagy exacerbates proteinuria in diabetic nephropathy. Article. Diabetes. 65(3), 755–767. https://doi.org/10.2337/db15-0473 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lenoir, O. et al. Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis. Autophagy. 11(7), 1130–1145. https://doi.org/10.1080/15548627.2015.1049799 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, X. J. et al. Histone deacetylase 4 selectively contributes to podocyte injury in diabetic nephropathy. Article. Kidney Int. 86(4), 712–725. https://doi.org/10.1038/ki.2014.111 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, W. et al. Course monitoring of membranous nephropathy: Both autoantibodies and podocytes require multidimensional attention. Autoimmun. Rev. 21(2), 102976. https://doi.org/10.1016/j.autrev.2021.102976 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, X. et al. Long-term exposure to air pollution and increased risk of membranous nephropathy in China. J. Am. Soc. Nephrol. JASN. 27(12), 3739–3746. https://doi.org/10.1681/ASN.2016010093 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Delarue, F. et al. Stable cell line of T-SV40 immortalized human glomerular visceral epithelial cells. Kidney Int. 40(5), 906–912. https://doi.org/10.1038/ki.1991.292 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mundel, P., Gilbert, P. & Kriz, W. Podocytes in glomerulus of rat kidney express a characteristic 44 KD protein. J. Histochem. Cytochem. Off. J. Histochem. Soc. 39(8), 1047–1056. https://doi.org/10.1177/39.8.1856454 (1991).

    Article 
    CAS 

    Google Scholar
     

  • Ardaillou, N. et al. Characterization of a simian virus 40-transformed human podocyte cell line producing type IV collagen and exhibiting polarized response to atrial natriuretic peptide. J. Cell. Physiol. 152(3), 599–616. https://doi.org/10.1002/jcp.1041520320 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saleem, M. et al. A conditionally immortalized human podocyte cell line demonstrating nephrin and podocin expression. J. Am. Soc. Nephrol. JASN. 13(3), 630–638. https://doi.org/10.1681/asn.V133630 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mundel, P. et al. Rearrangements of the cytoskeleton and cell contacts induce process formation during differentiation of conditionally immortalized mouse podocyte cell lines. Exp. Cell Res. 236(1), 248–258. https://doi.org/10.1006/excr.1997.3739 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schiwek, D. et al. Stable expression of nephrin and localization to cell-cell contacts in novel murine podocyte cell lines. Kidney Int. 66(1), 91–101. https://doi.org/10.1111/j.1523-1755.2004.00711.x (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sachs, M. et al. ADAM10-mediated ectodomain shedding is an essential driver of podocyte damage. J. Am. Soc. Nephrol. JASN. 32(6), 1389–1408. https://doi.org/10.1681/ASN.2020081213 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Verma, R. et al. Nephrin ectodomain engagement results in Src kinase activation, nephrin phosphorylation, Nck recruitment, and actin polymerization. J. Clin. Investig. 116(5), 1346–1359. https://doi.org/10.1172/JCI27414 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doke, T. et al. Transcriptome-wide association analysis identifies DACH1 as a kidney disease risk gene that contributes to fibrosis. J. Clin. Investig. 131(10), 1. https://doi.org/10.1172/JCI141801 (2021).

    Article 

    Google Scholar
     

  • Cao, A. et al. DACH1 protects podocytes from experimental diabetic injury and modulates PTIP-H3K4Me3 activity. J. Clin. Invest. 131(10), 1. https://doi.org/10.1172/JCI141279 (2021).

    Article 

    Google Scholar
     

  • Pippin, J. W. et al. Upregulated PD-1 signaling antagonizes glomerular health in aged kidneys and disease. J. Clin. Investig. 132(16), 1. https://doi.org/10.1172/JCI156250 (2022).

    Article 

    Google Scholar
     

  • Koh, K. H. et al. Nonimmune cell-derived ICOS ligand functions as a renoprotective αvβ3 integrin-selective antagonist. J. Clin. Investig. 129(4), 1713–1726. https://doi.org/10.1172/JCI123386 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agarwal, S., Sudhini, Y. R., Reiser, J. & Altintas, M. M. From infancy to fancy: A glimpse into the evolutionary journey of podocytes in culture. Kidney 2(2), 385–397. https://doi.org/10.34067/KID.0006492020 (2021).

    Article 

    Google Scholar
     

  • Shankland, S., Pippin, J., Reiser, J. & Mundel, P. Kidney Int. 72(1), 26–36. https://doi.org/10.1038/sj.ki.5002291 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Satyam, A., Tsokos, M., Tresback, J., Zeugolis, D. & Tsokos, G. Cell derived extracellular matrix-rich biomimetic substrate supports podocyte proliferation, differentiation and maintenance of native phenotype. Adv. Funct. Mater. 30(44), 1. https://doi.org/10.1002/adfm.201908752 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, H. et al. A simple and highly purified method for isolation of glomeruli from the mouse kidney. 317(5), F1217–F1223. https://doi.org/10.1152/ajprenal.00293.2019 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Takemoto, M. et al. A new method for large scale isolation of kidney glomeruli from mice. Am. J. Pathol. 161(3), 799–805. https://doi.org/10.1016/S0002-9440(10)64239-3 (2002).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katsuya, K., Yaoita, E., Yoshida, Y., Yamamoto, Y. & Yamamoto, T. Kidney Int. 69(11), 2101–2106. https://doi.org/10.1038/sj.ki.5000398 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, B., Sahoo, D. & Brooks, J. D. Comprehensive gene expression changes associated with mouse postnatal kidney development. J. Urol. 189(6), 2385–2390. https://doi.org/10.1016/j.juro.2012.12.002 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hartman, H. A., Lai, H. L. & Patterson, L. T. Cessation of renal morphogenesis in mice. Dev. Biol. 310(2), 379–387. https://doi.org/10.1016/j.ydbio.2007.08.021 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Orth, S. R. et al. Adult human mesangial cells (HMCs) express endothelin-B-receptors which mediate endothelin-1-induced cell growth. J. Cardiovasc. Pharmacol. 36(5 Suppl 1), S232–S237. https://doi.org/10.1097/00005344-200036051-00069 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mundel, P., Reiser, J. & Kriz, W. Induction of differentiation in cultured rat and human podocytes. J. Am. Soc. Nephrol. JASN. 8(5), 697–705. https://doi.org/10.1681/ASN.V85697 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kreisberg, J. I., Hoover, R. L. & Karnovsky, M. J. Isolation and characterization of rat glomerular epithelial cells in vitro. Kidney Int. 14(1), 21–30. https://doi.org/10.1038/ki.1978.86 (1978).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morrison, A. A., Viney, R. L., Saleem, M. A. & Ladomery, M. R. New insights into the function of the Wilms tumor suppressor gene WT1 in podocytes. Am. J. Physiol. Renal Physiol. 295(1), F12–F17. https://doi.org/10.1152/ajprenal.00597.2007 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, J.-K. et al. WT1 is a key regulator of podocyte function: Reduced expression levels cause crescentic glomerulonephritis and mesangial sclerosis. Hum. Mol. Genet. 11(6), 651–659. https://doi.org/10.1093/hmg/11.6.651 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mundel, P. et al. Synaptopodin: An actin-associated protein in telencephalic dendrites and renal podocytes. J. Cell Biol. 139(1), 193–204. https://doi.org/10.1083/jcb.139.1.193 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Asanuma, K. et al. Synaptopodin regulates the actin-bundling activity of alpha-actinin in an isoform-specific manner. J. Clin. Investig. 115(5), 1188–1198. https://doi.org/10.1172/JCI23371 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Asanuma, K. et al. Synaptopodin orchestrates actin organization and cell motility via regulation of RhoA signalling. Nat. Cell Biol. 8(5), 485–491. https://doi.org/10.1038/ncb1400 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bejoy, J. et al. Podocytes derived from human induced pluripotent stem cells: Characterization, comparison, and modeling of diabetic kidney disease. Stem Cell Res. Ther. 13(1), 355. https://doi.org/10.1186/s13287-022-03040-6 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khoshnoodi, J. et al. Nephrin promotes cell-cell adhesion through homophilic interactions. Am. J. Pathol. 163(6), 2337–2346. https://doi.org/10.1016/S0002-9440(10)63590-0 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schwarz, K. et al. Podocin, a raft-associated component of the glomerular slit diaphragm, interacts with CD2AP and nephrin. J. Clin. Invest. 108(11), 1621–1629. https://doi.org/10.1172/JCI12849 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herwig, J. et al. Thrombospondin type 1 domain-containing 7A localizes to the slit diaphragm and stabilizes membrane dynamics of fully differentiated podocytes. J. Am. Soc. Nephrol. JASN. 30(5), 824–839. https://doi.org/10.1681/ASN.2018090941 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ohse, T. et al. Establishment of conditionally immortalized mouse glomerular parietal epithelial cells in culture. J. Am. Soc. Nephrol. JASN. 19(10), 1879–1890. https://doi.org/10.1681/asn.2007101087 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prochnicki, A. et al. Characterization of glomerular Sox9 cells in anti-glomerular basement membrane nephritis in the rat. Am. J. Pathol. 188(11), 2529–2541. https://doi.org/10.1016/j.ajpath.2018.07.023 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Djudjaj, S. et al. Keratins are novel markers of renal epithelial cell injury. Kidney Int. 89(4), 792–808. https://doi.org/10.1016/j.kint.2015.10.015 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grigorieva, I. V. et al. A novel role for GATA3 in mesangial cells in glomerular development and injury. J. Am. Soc. Nephrol. JASN. 30(9), 1641–1658. https://doi.org/10.1681/ASN.2018111143 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sarrab, R. et al. Establishment of conditionally immortalized human glomerular mesangial cells in culture, with unique migratory properties. Am. J. Physiol. Renal Physiol. 301(5), F1131–F1138. https://doi.org/10.1152/ajprenal.00589.2010 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Awal, H. B. et al. Linagliptin, when compared to placebo, improves CD34+ve endothelial progenitor cells in type 2 diabetes subjects with chronic kidney disease taking metformin and/or insulin: a randomized controlled trial. Cardiovasc. Diabetol. 19(1), 72. https://doi.org/10.1186/s12933-020-01046-z (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin, J. et al. Soluble FLT1 binds lipid microdomains in podocytes to control cell morphology and glomerular barrier function. Cell. 151(2), 384–399. https://doi.org/10.1016/j.cell.2012.08.037 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vallon, V. et al. SGLT2 mediates glucose reabsorption in the early proximal tubule. J. Am. Soc. Nephrol. JASN. 22(1), 104–112. https://doi.org/10.1681/ASN.2010030246 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghezzi, C., Loo, D. D. F. & Wright, E. M. Physiology of renal glucose handling via SGLT1, SGLT2 and GLUT2. Diabetologia. 61(10), 2087–2097. https://doi.org/10.1007/s00125-018-4656-5 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hernando, N., Gagnon, K. & Lederer, E. Phosphate transport in epithelial and nonepithelial tissue. Physiol. Rev. 101(1), 1. https://doi.org/10.1152/physrev.00008.2019 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gaut, J. P., Crimmins, D. L., Lockwood, C. M., McQuillan, J. J. & Ladenson, J. H. Expression of the Na+/K+-transporting ATPase gamma subunit FXYD2 in renal tumors. Mod. Pathol. 26(5), 716–724. https://doi.org/10.1038/modpathol.2012.202 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, J. et al. Baicalin serves a protective role in diabetic nephropathy through preventing high glucose-induced podocyte apoptosis. Exp. Ther. Med. 20(1), 367–374. https://doi.org/10.3892/etm.2020.8701 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, C. et al. Berberine mitigates high glucose-induced podocyte apoptosis by modulating autophagy via the mTOR/P70S6K/4EBP1 pathway. Life Sci. 243, 117277. https://doi.org/10.1016/j.lfs.2020.117277 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao, T. et al. Recent advances in traditional Chinese medicine for treatment of podocyte injury. Front. Pharmacol. 13, 816025. https://doi.org/10.3389/fphar.2022.816025 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, L., Han, J., Yuan, R., Xue, L. & Pang, W. Berberine ameliorates diabetic nephropathy by inhibiting TLR4/NF-κB pathway. Biol. Res. 51(1), 9. https://doi.org/10.1186/s40659-018-0157-8 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiang, X.-Y. et al. Berberine alleviates palmitic acid-induced podocyte apoptosis by reducing reactive oxygen species-mediated endoplasmic reticulum stress. Mol. Med. Rep. 23(1), 1. https://doi.org/10.3892/mmr.2020.11641 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yin, L., Yu, L., He, J. C. & Chen, A. Controversies in podocyte loss: Death or detachment?. Front. Cell Dev. Biol. 9, 771931. https://doi.org/10.3389/fcell.2021.771931 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bao, H., Ge, Y., Peng, A. & Gong, R. Fine-tuning of NFκB by glycogen synthase kinase 3β directs the fate of glomerular podocytes upon injury. Kidney Int. 87(6), 1176–1190. https://doi.org/10.1038/ki.2014.428 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sakairi, T. et al. Conditionally immortalized human podocyte cell lines established from urine. Am. J. Physiol. Renal Physiol. 298(3), F557–F567. https://doi.org/10.1152/ajprenal.00509.2009 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rauch, C. et al. Differentiation of human iPSCs into functional podocytes. PloS one. 13(9), e0203869. https://doi.org/10.1371/journal.pone.0203869 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schnabel, E., Anderson, J. M. & Farquhar, M. G. The tight junction protein ZO-1 is concentrated along slit diaphragms of the glomerular epithelium. J. Cell Biol. 111(3), 1255–1263. https://doi.org/10.1083/jcb.111.3.1255 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kawachi, H. et al. Developmental expression of the nephritogenic antigen of monoclonal antibody 5-1-6. Am. J. Pathol. 147(3), 823–833 (1995).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Horvat, R., Hovorka, A., Dekan, G., Poczewski, H. & Kerjaschki, D. Endothelial cell membranes contain podocalyxin–the major sialoprotein of visceral glomerular epithelial cells. J. Cell Biol. 102(2), 484–491. https://doi.org/10.1083/jcb.102.2.484 (1986).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oosterwijk, E., Van Muijen, G. N., Oosterwijk-Wakka, J. C. & Warnaar, S. O. Expression of intermediate-sized filaments in developing and adult human kidney and in renal cell carcinoma. J. Histochem. Cytochem. Off. J. Histochem. Soc. 38(3), 385–392. https://doi.org/10.1177/38.3.1689337 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Thomas, G. J., Jenner, L., Mason, R. M. & Davies, M. Human glomerular epithelial cell proteoglycans. Arch. Biochem. Biophys. 278(1), 11–20. https://doi.org/10.1016/0003-9861(90)90224-m (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ning, L., Suleiman, H. & Miner, J. Synaptopodin is dispensable for normal podocyte homeostasis but is protective in the context of acute podocyte injury. J. Am. Soc. Nephrol. JASN. 31(12), 2815–2832. https://doi.org/10.1681/asn.2020050572 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, H. et al. Synaptopodin limits TRPC6 podocyte surface expression and attenuates proteinuria. J. Am. Soc. Nephrol. JASN. 27(11), 3308–3319. https://doi.org/10.1681/asn.2015080896 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, X. et al. Establishment and functional characterization of the reversibly immortalized mouse glomerular podocytes (imPODs). Genes Dis. 5(2), 137–149. https://doi.org/10.1016/j.gendis.2018.04.003 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mundlos, S. et al. Nuclear localization of the protein encoded by the Wilms’ tumor gene WT1 in embryonic and adult tissues. Development. 119(4), 1329–1341. https://doi.org/10.1242/dev.119.4.1329 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • May, C. J., Saleem, M. & Welsh, G. I. Podocyte dedifferentiation: A specialized process for a specialized cell. Front. Endocrinol. 5, 148. https://doi.org/10.3389/fendo.2014.00148 (2014).

    Article 

    Google Scholar
     

  • Chittiprol, S., Chen, P., Petrovic-Djergovic, D., Eichler, T. & Ransom, R. Marker expression, behaviors, and responses vary in different lines of conditionally immortalized cultured podocytes. Am. J. Physiol. Renal Physiol. 301(3), F660–F671. https://doi.org/10.1152/ajprenal.00234.2011 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holzman, L. B. et al. Nephrin localizes to the slit pore of the glomerular epithelial cell. Kidney Int. 56(4), 1481–1491. https://doi.org/10.1046/j.1523-1755.1999.00719.x (1999).

    Article 
    PubMed 

    Google Scholar
     

  • Romagnani, P. & Remuzzi, G. Renal progenitors in non-diabetic and diabetic nephropathies. Trends Endocrinol. Metab. 24(1), 13–20. https://doi.org/10.1016/j.tem.2012.09.002 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dou, C. et al. The Krüppel-like factor 15-NFATc1 axis ameliorates podocyte injury: A novel rationale for using glucocorticoids in proteinuria diseases. Clin. Sci. 134(12), 1305–1318. https://doi.org/10.1042/cs20200075 (2020).

    Article 
    CAS 

    Google Scholar