Levey, A. S. et al. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am. J. Kidney Dis. 39, 1–266 (2002).
Kidney Disease. Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 3, 1–150 (2013).
Bagheri, B. et al. Sodium‐glucose cotransporter 2 inhibitors: a comprehensive review from cells to bedside. Fundam. Clin. Pharmacol. 37, 481–492 (2023).
Parfianowicz, D. et al. Finerenone: a new era for mineralocorticoid receptor antagonism and cardiorenal protection. Curr. Probl. Cardiol. 47, 101386 (2022).
Fakhouri, F., Schwotzer, N., Golshayan, D. & Frémeaux-Bacchi, V. The rational use of complement inhibitors in kidney diseases. Kidney Int. Rep. 7, 1165–1178 (2022).
Zhang, Z., Xu, Q. & Huang, L. B cell depletion therapies in autoimmune diseases: monoclonal antibodies or chimeric antigen receptor-based therapy? Front. Immunol. 14, 1126421 (2023).
Salvadori, M. & Tsalouchos, A. Innovative immunosuppression in kidney transplantation: a challenge for unmet needs. World J. Transpl. 12, 27–41 (2022).
Sánchez-Álvarez, E. et al. Survival with low- and high-flux dialysis. Clin. Kidney J. 14, 1915–1923 (2021).
Blankestijn, P. J. et al. Effect of hemodiafiltration or hemodialysis on mortality in kidney failure. N. Engl. J. Med. 389, 700–709 (2023).
Bello, A. K. et al. Epidemiology of peritoneal dialysis outcomes. Nat. Rev. Nephrol. 18, 779–793 (2022).
Lewis, A. et al. Organ donation in the US and Europe: the supply vs demand imbalance. Transpl. Rev. 35, 100585 (2021).
O’Hare, A. M. Patient-centered care in renal medicine: five strategies to meet the challenge. Am. J. Kidney Dis. 71, 732–736 (2018).
Kellum, J. A. et al. Acute kidney injury. Nat. Rev. Dis. Prim. 7, 52 (2021).
Pouwels, X. G. L. V. et al. Cost-effectiveness of home-based screening of the general population for albuminuria to prevent progression of cardiovascular and kidney disease. eClinicalMedicine 68, 102414 (2024).
Yeo, S. C., Wang, H., Ang, Y. G., Lim, C. K. & Ooi, X. Y. Cost-effectiveness of screening for chronic kidney disease in the general adult population: a systematic review. Clin. Kidney J. 17, sfad137 (2023).
Ekrikpo, U. et al. Epidemiology and outcomes of glomerular diseases in low- and middle-income countries. Semin. Nephrol. 42, 151316 (2022).
Mapes, D. L. et al. Health-related quality of life in the dialysis outcomes and practice patterns study (DOPPS). Am. J. Kidney Dis. 44, 54–60 (2004).
Lloveras, J., Arcos, E., Comas, J. & Crespo, M. et al. A paired survival analysis comparing hemodialysis and kidney transplantation from deceased elderly donors older than 65 years. Transplantation 99, 991–996 (2015).
Tonelli, M. et al. Comparison of the complexity of patients seen by different medical subspecialists in a universal health care system. JAMA Netw. Open. 1, e184852 (2018).
Crews, D. C. et al. Burden, access and disparities in kidney disease. Clin. Kidney J. 12, 160–166 (2019).
International Society of Nephrology. Global kidney health atlas. https://www.theisn.org/initiatives/global-kidney-health-atlas/ (accessed 27 March 2024).
Kasiske, B. L., London, W. & Ellison, M. D. Race and socioeconomic factors influencing early placement on the kidney transplant waiting list. J. Am. Soc. Nephrol. 9, 2142–2147 (1998).
Malek, S. K., Keys, B. J., Kumar, S., Milford, E. & Tullius, S. G. Racial and ethnic disparities in kidney transplantation. Transpl. Int. 24, 419–424 (2011).
Daw, J. Explaining the persistence of health disparities: social stratification and the efficiency-equity trade-off in the kidney transplantation system. Am. J. Sociol. 120, 1595–1640 (2015).
Davison, S. N., Jhangri, G. S. & Koffman, J. Knowledge of and attitudes towards palliative care and hospice services among patients with advanced chronic kidney disease. BMJ Support. Palliat. Care 6, 66–74 (2016).
Köttgen, A. et al. Genetics in chronic kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) controversies conference. Kidney Int. 101, 1126–1141 (2022).
Bergmann, C. et al. Polycystic kidney disease. Nat. Rev. Dis. Prim. 4, 50 (2018).
Bergmann, C. Genetics of autosomal recessive polycystic kidney disease and its differential diagnoses. Front. Pediatr. 5, 221 (2018).
Warady, B. A. et al. Alport syndrome classification and management. Kidney Med. 2, 639–649 (2020).
Živná, M. et al. Autosomal dominant tubulointerstitial kidney disease: a review. Am. J. Med. Genet. C. Semin. Med. Genet. 190, 309–324 (2022).
Elliott, M. D. et al. Clinical and genetic characteristics of CKD patients with high-risk APOL1 genotypes. J. Am. Soc. Nephrol. 34, 909–919 (2023).
Wu, M. Y., Chen, Y. C., Chiu, I. J. & Wu, M. S. Genetic insight into primary glomerulonephritis. Nephrology 27, 649–657 (2022).
Chen, L. et al. Genome-wide assessment of genetic risk for systemic lupus erythematosus and disease severity. Hum. Mol. Genet. 29, 1745–1756 (2020).
Liao, L.-N. et al. Genetic risk score for risk prediction of diabetic nephropathy in Han Chinese type 2 diabetes patients. Sci. Rep. 9, 19897 (2019).
Genovese, G. et al. Association of Trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329, 841–845 (2010).
Egbuna, O. et al. Inaxaplin for proteinuric kidney disease in persons with two APOL1 variants. N. Engl. J. Med. 388, 969–979 (2023).
ClinGen. Clinical domain working groups: kidney disease CDWG. https://clinicalgenome.org/working-groups/clinical-domain/clingen-kidney-disease-clinical-domain-working-group/ (2024).
Vanholder, R. et al. A policy call to address rare kidney disease in health care plans. Clin. J. Am. Soc. Nephrol. 18, 1510–1518 (2023).
Abe, S. et al. Explainable AI for estimating pathogenicity of genetic variants using large-scale knowledge graphs. Cancers 15, 1118 (2023).
Khan, A. et al. Genome-wide polygenic score to predict chronic kidney disease across ancestries. Nat. Med. 28, 1412–1420 (2022).
Wei, L., Han, Y. & Tu, C. Molecular pathways of diabetic kidney disease inferred from proteomics. Diabetes Metab. Syndr. Obes. 16, 117–128 (2023).
Bai, Y. et al. Urinary proteome analysis of acute kidney injury in post-cardiac surgery patients using enrichment materials with high-resolution mass spectrometry. Front. Bioeng. Biotechnol. 10, 1002853 (2022).
Moledina, D. G. et al. Identification and validation of urinary CXCL9 as a biomarker for diagnosis of acute interstitial nephritis. J. Clin. Invest. 133, e168950 (2023).
Pontillo, C. & Mischak, H. Urinary peptide-based classifier CKD273: towards clinical application in chronic kidney disease. Clin. Kidney J. 10, 192–201 (2017).
Zürbig, P., Mischak, H., Menne, J. & Haller, H. CKD273 enables efficient prediction of diabetic nephropathy in nonalbuminuric patients. Diabetes Care 42, e4–e5 (2019).
Critselis, E., Vlahou, A., Stel, V. S. & Morton, R. L. Cost-effectiveness of screening type 2 diabetes patients for chronic kidney disease progression with the CKD273 urinary peptide classifier as compared to urinary albumin excretion. Nephrol. Dial. Transpl. 33, 441–449 (2018).
Hocher, B. & Adamski, J. Metabolomics for clinical use and research in chronic kidney disease. Nat. Rev. Nephrol. 13, 269–284 (2017).
Vanholder, R., Pletinck, A., Schepers, E. & Glorieux, G. Biochemical and clinical impact of organic uremic retention solutes: a comprehensive update. Toxins 10, 33 (2018).
Glorieux, G., Nigam, S. K., Vanholder, R. & Verbeke, F. Role of the microbiome in gut-heart-kidney cross talk. Circ. Res. 132, 1064–1083 (2023).
Zoccali, C. et al. Cardiovascular complications in chronic kidney disease: a review from the European Renal and Cardiovascular Medicine Working Group of the European Renal Association. Cardiovasc. Res. 119, 2017–2032 (2023).
Angelotti, M. L., Antonelli, G., Conte, C. & Romagnani, P. Imaging the kidney: from light to super-resolution microscopy. Nephrol. Dial. Transpl. 36, 19–28 (2021).
van Timmeren, C. D., Tanadini-Lang, S., Alkadhi, H. & Baessler, B. Radiomics in medical imaging: “how-to” guide and critical reflection. Insights Imaging 11, 91 (2020).
Arimura, H., Soufi, M., Kamezawa, H., Ninomiya, K. & Yamada, M. Radiomics with artificial intelligence for precision medicine in radiation therapy. J. Radiat. Res. 60, 150–157 (2019).
Prasad, P. V., Li, L.-P., Hack, B., Leloudas, N. & Sprague, S. M. Quantitative blood oxygenation level dependent magnetic resonance imaging for estimating intra-renal oxygen availability demonstrates kidneys are hypoxemic in human CKD. Kidney Int. Rep. 8, 1057–1067 (2023).
A research study to find out how semaglutide works in the kidneys compared to placebo, in people with type 2 diabetes and chronic kidney disease (the REMODEL trial) (REMODEL). ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT04865770 (2024).
Heydari, Z. et al. Organoids: a novel modality in disease modeling. Biodes Manuf. 4, 689–716 (2021).
Osafune, K. iPSC technology-based regenerative medicine for kidney diseases. Clin. Exp. Nephrol. 25, 574–584 (2021).
Wang, J., Lin, Y., Chen, X., Liu, Y. & Zhou, T. Mesenchymal stem cells: a new therapeutic tool for chronic kidney disease. Front. Cell Dev. Biol. 10, 910592 (2022).
Zhou, T. et al. Challenges and advances in clinical applications of mesenchymal stromal cells. J. Hematol. Oncol. 14, 24 (2021).
Huang, J., Kong, Y., Xie, C. & Zhou, L. Stem/progenitor cell in kidney: characteristics, homing, coordination, and maintenance. Stem Cell Res. Ther. 12, 197 (2021).
Poulsom, R. et al. Bone marrow contributes to renal parenchymal turnover and regeneration. J. Pathol. 195, 229–235 (2001).
Zhu, W., Li, Y., Han, M. & Jang, J. Regulatory mechanisms and reversal of CD8+ T cell exhaustion: a literature review. Biology 12, 541 (2023).
Kelley, R. et al. A population of selected renal cells augments renal function and extends survival in the ZSF1 model of progressive diabetic nephropathy. Cell Transpl. 22, 1023–1039 (2013).
Bruce, A. T. et al. Selected renal cells modulate disease progression in rodent models of chronic kidney disease via NF-κB and TGF-β1 pathways. Regen. Med. 10, 815–839 (2015).
Stenvinkel, P. et al. Implantation of autologous selected renal cells in diabetic chronic kidney disease stages 3 and 4-clinical experience of a ‘First in Human’ study. Kidney Int. Rep. 1, 105–113 (2016).
A long-term follow-up study of participants exposed to REACT. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT05918523 (2024).
Köllner, S. M. S., Seifert, L., Zahner, G. & Tomas, N. M. Strategies towards antigen-specific treatments for membranous nephropathy. Front. Immunol. 13, 822508 (2022).
Peek, J. L. & Wilson, M. H. Cell and gene therapy for kidney disease. Nat. Rev. Nephrol. 19, 451–462 (2023).
Rao, V. K., Kapp, D. & Schroth, M. Gene therapy for spinal muscular atrophy: an emerging treatment option for a devastating disease. J. Manag. Care Spec. Pharm. 24, S3–S16 (2018).
Li, J., Qi, G., Tu, G., Yang, C. & Rong, R. Gene therapy in kidney transplantation: evidence of efficacy and future directions. Curr. Gene Ther. 17, 434–441 (2018).
Abordo-Adesida, E. et al. Stability of lentiviral vector-mediated transgene expression in the brain in the presence of systemic antivector immune responses. Hum. Gene Ther. 16, 741–751 (2005).
Bulcha, J. T., Wang, Y., Ma, H., Tai, P. W. L. & Gao, G. Viral vector platforms within the gene therapy landscape. Signal. Transduct. Target. Ther. 6, 53 (2021).
Yuzefovych, Y. et al. Genetic engineering of the kidney to permanently silence MHC transcripts during ex vivo organ perfusion. Front. Immunol. 11, 265 (2020).
Xiang, H., Zhang, C. & Xiong, J. Emerging role of extracellular vesicles in kidney diseases. Front. Pharmacol. 13, 985030 (2022).
Montgomery, R. A., Mehta, S. A., Parent, B. & Griesemer, A. Next steps for the xenotransplantation of pig organs into humans. Nat. Med. 28, 1533–1536 (2022).
Perico, N., Casiraghi, F. & Remuzzi, G. Clinical kidney xenotransplantation Major progress but more work needs to be done. Nephron 146, 610–615 (2022).
Cooper, D. K., Ekser, B. & Ramsoondar, J. et al. The role of genetically engineered pigs in xenotransplantation research. J. Pathol. 238, 288–299 (2016).
Wijkstrom, M., Iwase, H., Paris, W. & Hara, H. et al. Xenotransplantation: experimental progress and clinical prospects. Kidney 91, 790–796 (2017).
Xi, J., Zheng, W., Chen, M. & Zou, Q. et al. Genetically engineered pigs for xenotransplantation: hopes and challenges. Front. Cell Dev. Biol. 10, 1093534 (2022).
Anand, R. P., Layer, J. V., Heja, D. & Hirose, T. et al. Design and testing of a humanized porcine donor for xenotransplantation. Nature 622, 393–401 (2023).
Montgomery, R. A., Stern, J. M., Lonze, B. E. & Tatapudi, V. S. et al. Results of two cases of pig-to-human kidney xenotransplantation. N. Engl. J. Med. 386, 1889–1898 (2022).
Porrett, P. M., Orandi, B. J., Kumar, V. & Houp, J. et al. First clinical-grade porcine kidney xenotransplant using a human decedent model. Am. J. Transpl. 22, 1037–1053 (2022).
Hawthorne, W. J. World first pig‐to‐human cardiac xenotransplantation. Xenotransplantation 29, e12733 (2022).
Griffith, B. P., Goerlich, C. E., Singh, A. K. & Rothblatt, M. et al. Genetically modified porcine-to-human cardiac xenotransplantation. N. Engl. J. Med. 387, 35–44 (2022).
Loupy, A., Goutaudier, V., Giarraputo, A. & Mezine, F. et al. Immune response after pig-to-human kidney xenotransplantation: a multimodal phenotyping study. Lancet 402, 1158–1169 (2023).
Mohiuddin, M. M., Singh, A. K., Scobie, L. & Goerlich, C. E. et al. Graft dysfunction in compassionate use of genetically engineered pig-to-human cardiac xenotransplantation: a case report. Lancet 29, 397–410 (2023).
Fransen, M. F. J. et al. Bioprinting of kidney in vitro models: cells, biomaterials, and manufacturing techniques. Essays Biochem. 65, 587–602 (2021).
Tang, Y. S., Tsai, Y. C., Chen, T. W. & Li, S. Y. Artificial kidney engineering: the development of dialysis membranes for blood purification. Membranes 12, 177 (2022).
Jin, Q., Leaman, R. & Lu, Z. Retrieve, summarize, and verify: how will chatGPT affect information seeking from the medical literature? J. Am. Soc. Nephrol. 34, 1302–1304 (2023).
Kashani, K. & Herasevich, V. Sniffing out acute kidney injury in the ICU: do we have the tools? Curr. Opin. Crit. Care 19, 531–536 (2013).
Rahman, M., Shad, F. & Smith, M. C. Acute kidney injury: a guide to diagnosis and management. Am. Fam. Physician 86, 631–639 (2012).
Koyner, J. L., Carey, K. A., Edelson, D. P. & Churpek, M. M. The development of a machine learning inpatient acute kidney injury prediction model. Crit. Care Med. 46, 1070–1077 (2018).
Segal, Z. et al. Machine learning algorithm for early detection of end-stage renal disease. BMC Nephrol. 21, 518 (2020).
Chuah, A. et al. Machine learning improves upon clinicians’ prediction of end stage kidney disease. Front. Med. 9, 837232 (2022).
Yoo, K. D. et al. A machine learning approach using survival statistics to predict graft survival in kidney transplant recipients: a multicenter cohort study. Sci. Rep. 7, 8904 (2017).
Chaudhuri, S. et al. Machine learning directed interventions associate with decreased hospitalization rates in hemodialysis patients. Int. J. Med. Inform. 153, 104541 (2021).
Bozzetto, M. et al. Clinical use of computational modeling for surgical planning of arteriovenous fistula for hemodialysis. BMC Med. Inf. Decis. Mak. 17, 26 (2017).
Zhang, H. et al. Deep learning to classify arteriovenous access aneurysms in hemodialysis patients. Clin. Kidney J. 15, 829 (2022).
Barbieri, C. et al. An international observational study suggests that artificial intelligence for clinical decision support optimizes anemia management in hemodialysis patients. Kidney Int. 90, 422–429 (2016).
Zhang, H. et al. Real-time prediction of intradialytic hypotension using machine learning and cloud computing infrastructure. Nephrol. Dial. Transpl. 38, 1761–1769 (2023).
Huo, Y., Deng, R., Liu, Q., Fogo, A. B. & Yang, H. AI applications in renal pathology. Kidney Int. 99, 1309–1320 (2021).
Xi, I. L. et al. Deep learning to distinguish benign from malignant renal lesions based on routine MR imaging. Clin. Cancer Res. 26, 1944–1952 (2020).
Fuertinger, D. H., Topping, A., Kappel, F., Thijssen, S. & Kotanko, P. The virtual anemia trial: an assessment of model‐based in silico clinical trials of anemia treatment algorithms in patients with hemodialysis. CPT Pharmacomet. Syst. Pharmacol. 7, 219 (2018).
Kamel Boulos, M. N. & Zhang, P. Digital twins: from personalised medicine to precision public health. J. Pers. Med. 11, 745 (2021).
Bohr, A. & Memarzadeh, K. The rise of artificial intelligence in healthcare applications. In Artificial Intelligence in Healthcare (eds Bohr, A. & Memarzadeh, K.) Ch. 2, 25–60 (Academic, 2020); https://doi.org/10.1016/B978-0-12-818438-7.00002-2.
INCLUSION. 10 steps to more ethical artificial intelligence. https://inclusioncloud.com/insights/blog/ethical-artificial-intelligence (accessed 1 March 2024).
Glaser, J. et al. Climate change and the emergent epidemic of CKD from heat stress in rural communities: the case for heat stress nephropathy. Clin. J. Am. Soc. Nephrol. 11, 1472–1483 (2016).
Lunyera, J. et al. CKD of uncertain etiology: a systematic review. Clin. J. Am. Soc. Nephrol. 11, 379–385 (2016).
Xia, J. et al. Cigarette smoking and chronic kidney disease in the general population: a systematic review and meta-analysis of prospective cohort studies. Nephrol. Dial. Transplant. 32, 475–487 (2017).
Xu, Y. et al. Associations between long-term exposure to low-level air pollution and risk of chronic kidney disease-findings from the Malmö Diet and Cancer cohort. Env. Int. 160, 107085 (2022).
Kim, Y. J., Choi, W.-J., Ham, S., Kang, S.-K. & Lee, W. Association between occupational or environmental noise exposure and renal function among middle-aged and older Korean adults: a cross-sectional study. Sci. Rep. 11, 24127 (2021).
Yang, T., Richards, E. M., Pepine, C. J. & Raizada, M. K. The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease. Nat. Rev. Nephrol. 14, 442–456 (2018).
Gryp, T. et al. Gut microbiota generation of protein-bound uremic toxins and related metabolites is not altered at different stages of chronic kidney disease. Kidney Int. 97, 1230–1242 (2020).
Hall, G., Wang, L. & Spurney, R. F. TRPC channels in proteinuric kidney diseases. Cells 9, 44 (2019).
Reilly, D. F. & Breyer, M. D. The use of genomics to drive kidney disease drug discovery and development. Clin. J. Am. Soc. Nephrol. 15, 1342–1351 (2020).
Yu, M. et al. Discovery of a potent and selective TRPC5 inhibitor, efficacious in a focal segmental glomerulosclerosis model. ACS Med. Chem. Lett. 10, 1579–1585 (2019).
Willer, C. J. et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 45, 1274–1283 (2013).
Katzmann, J. L. & Laufs, U. PCSK9-directed therapies: an update. Curr. Opin. Lipidol. https://doi.org/10.1097/MOL.0000000000000919 (2024).
Pinto, N. & Eileen Dolan, M. Clinically relevant genetic variations in drug metabolizing enzymes. Curr. Drug. Metab. 12, 487–497 (2011).
Song, I. S., Shin, H. J. & Shin, J. G. Genetic variants of organic cation transporter 2 (OCT2) significantly reduce metformin uptake in oocytes. Xenobiotica 38, 1252–1262 (2008).
Kajiwara, M. et al. Identification of multidrug and toxin extrusion (MATE1 and MATE2-K) variants with complete loss of transport activity. J. Hum. Genet. 54, 40–46 (2009).
Wu, R. et al. Impact of HLA-B*58:01 allele and allopurinol-induced cutaneous adverse drug reactions: evidence from 21 pharmacogenetic studies. Oncotarget 7, 81870–81879 (2016).
Min, S. et al. An integrated clinical and genetic prediction model for tacrolimus levels in pediatric solid organ transplant recipients. Transplantation 106, 597–606 (2022).
Dean, L. Azathioprine therapy and TPMT genotype. Medical Genetics Summaries https://www.ncbi.nlm.nih.gov/books/NBK100661/bin/20160503azathioprine.pdf (NCBI, 2012).
Genvigir, F. D. V., Cerda, A., Hirata, T. D. C., Hirata, M. H. & Hirata, R. D. C. Mycophenolic acid pharmacogenomics in kidney transplantation. J. Transl. Genet. Genom. 4, 320–355 (2020).
Anaya, B. J. et al. Engineering of 3D printed personalized polypills for the treatment of the metabolic syndrome. Int. J. Pharm. 642, 123194 (2023).
De Jong, W. H. & Borm, P. J. A. Drug delivery and nanoparticles: applications and hazards. Int. J. Nanomed. 3, 133–149 (2008).
Li, W. et al. Targeted drug delivery systems for kidney diseases. Front. Bioeng. Biotechnol. 9, 683247 (2021).
Valentijn, P. P., Biermann, C. & Bruijnzeels, M. A. Value-based integrated (renal) care: setting a development agenda for research and implementation strategies. BMC Health Serv. Res. 16, 330 (2016).
Collister, D. et al. Multidisciplinary chronic kidney disease clinic practices: a scoping review. Can. J. Kidney Health Dis. 6, 205435811988266 (2019).
Morton, R. L. & Sellars, M. From patient-centered to person-centered care for kidney diseases. Clin. J. Am. Soc. Nephrol. 14, 623–625 (2019).
Diamantidis, C. J. & Becker, S. Health information technology (IT) to improve the care of patients with chronic kidney disease (CKD). BMC Nephrol. 15, 7 (2014).
Burgos-Calderón, R., Depine, S. Á. & Aroca-Martínez, G. Population kidney health. a new paradigm for chronic kidney disease management. Int. J. Env. Res. Public. Health 18, 6786 (2021).
Levin, A. et al. Perspectives on early detection of chronic kidney disease: the facts, the questions, and a proposed framework for 2023 and beyond. Kidney Int. 103, 1004–1008 (2023).
Brenner, B. M., Garcia, D. L. & Anderson, S. Glomeruli and blood pressure. Less of one, more the other? Am. J. Hypertens. 1, 335–347 (1988).
Lu, E. & Chai, E. Kidney supportive care in peritoneal dialysis: developing a person-centered kidney disease care plan. Kidney Med. 4, 100392 (2022).
Nagai, K. & Itsubo, N. Environmental impact of care for end-stage kidney disease on the earth and humans. JMA J. 5, 109–113 (2022).
Vanholder, R. et al. Inequities in kidney health and kidney care. Nat. Rev. Nephrol. 19, 694–708 (2023).
Langham, R. G. et al. Kidney health for all: bridging the gap in kidney health education and literacy. Nephrol. Dial. Transpl. 37, 605–612 (2022).
Consideration of sex differences is necessary to achieve health equity. Nat. Rev. Nephrol. 20, 1 (2024).
Mallamaci, F. & Tripepi, G. Shedding a light on sex disparity in clinical trials in CKD patients. Clin. Kidney J. 16, 1369–1371 (2023).
Yeates, K., Ghosh, S. & Kilonzo, K. Developing nephrology programs in very low-resource settings: challenges in sustainability. Kidney Int. Suppl. 3, 202–205 (2013).
Kam-Tao Li, P. et al. Kidney health for everyone everywhere from prevention to detection and equitable access to care. Nephrology 24, 9–21 (2020).
Orach, C. G. Health equity: challenges in low income countries. Afr. Health Sci. 9, S49–S51 (2009).
Luyckx, V. A., Tonelli, M. & Stanifer, J. W. The global burden of kidney disease and the sustainable development goals. Bull. World Health Organ. 96, 414–422D (2018).
- The Renal Warrior Project. Join Now
- Source: https://www.nature.com/articles/s41581-024-00828-y