Search
Search
Close this search box.

A new era in the science and care of kidney diseases – Nature Reviews Nephrology

  • Levey, A. S. et al. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am. J. Kidney Dis. 39, 1–266 (2002).

  • Kidney Disease. Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 3, 1–150 (2013).


    Google Scholar
     

  • Bagheri, B. et al. Sodium‐glucose cotransporter 2 inhibitors: a comprehensive review from cells to bedside. Fundam. Clin. Pharmacol. 37, 481–492 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parfianowicz, D. et al. Finerenone: a new era for mineralocorticoid receptor antagonism and cardiorenal protection. Curr. Probl. Cardiol. 47, 101386 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Fakhouri, F., Schwotzer, N., Golshayan, D. & Frémeaux-Bacchi, V. The rational use of complement inhibitors in kidney diseases. Kidney Int. Rep. 7, 1165–1178 (2022).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Zhang, Z., Xu, Q. & Huang, L. B cell depletion therapies in autoimmune diseases: monoclonal antibodies or chimeric antigen receptor-based therapy? Front. Immunol. 14, 1126421 (2023).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Salvadori, M. & Tsalouchos, A. Innovative immunosuppression in kidney transplantation: a challenge for unmet needs. World J. Transpl. 12, 27–41 (2022).

    Article 

    Google Scholar
     

  • Sánchez-Álvarez, E. et al. Survival with low- and high-flux dialysis. Clin. Kidney J. 14, 1915–1923 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Blankestijn, P. J. et al. Effect of hemodiafiltration or hemodialysis on mortality in kidney failure. N. Engl. J. Med. 389, 700–709 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bello, A. K. et al. Epidemiology of peritoneal dialysis outcomes. Nat. Rev. Nephrol. 18, 779–793 (2022).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Lewis, A. et al. Organ donation in the US and Europe: the supply vs demand imbalance. Transpl. Rev. 35, 100585 (2021).

    Article 

    Google Scholar
     

  • O’Hare, A. M. Patient-centered care in renal medicine: five strategies to meet the challenge. Am. J. Kidney Dis. 71, 732–736 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Kellum, J. A. et al. Acute kidney injury. Nat. Rev. Dis. Prim. 7, 52 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Pouwels, X. G. L. V. et al. Cost-effectiveness of home-based screening of the general population for albuminuria to prevent progression of cardiovascular and kidney disease. eClinicalMedicine 68, 102414 (2024).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Yeo, S. C., Wang, H., Ang, Y. G., Lim, C. K. & Ooi, X. Y. Cost-effectiveness of screening for chronic kidney disease in the general adult population: a systematic review. Clin. Kidney J. 17, sfad137 (2023).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Ekrikpo, U. et al. Epidemiology and outcomes of glomerular diseases in low- and middle-income countries. Semin. Nephrol. 42, 151316 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Mapes, D. L. et al. Health-related quality of life in the dialysis outcomes and practice patterns study (DOPPS). Am. J. Kidney Dis. 44, 54–60 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Lloveras, J., Arcos, E., Comas, J. & Crespo, M. et al. A paired survival analysis comparing hemodialysis and kidney transplantation from deceased elderly donors older than 65 years. Transplantation 99, 991–996 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tonelli, M. et al. Comparison of the complexity of patients seen by different medical subspecialists in a universal health care system. JAMA Netw. Open. 1, e184852 (2018).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Crews, D. C. et al. Burden, access and disparities in kidney disease. Clin. Kidney J. 12, 160–166 (2019).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • International Society of Nephrology. Global kidney health atlas. https://www.theisn.org/initiatives/global-kidney-health-atlas/ (accessed 27 March 2024).

  • Kasiske, B. L., London, W. & Ellison, M. D. Race and socioeconomic factors influencing early placement on the kidney transplant waiting list. J. Am. Soc. Nephrol. 9, 2142–2147 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Malek, S. K., Keys, B. J., Kumar, S., Milford, E. & Tullius, S. G. Racial and ethnic disparities in kidney transplantation. Transpl. Int. 24, 419–424 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Daw, J. Explaining the persistence of health disparities: social stratification and the efficiency-equity trade-off in the kidney transplantation system. Am. J. Sociol. 120, 1595–1640 (2015).

    Article 

    Google Scholar
     

  • Davison, S. N., Jhangri, G. S. & Koffman, J. Knowledge of and attitudes towards palliative care and hospice services among patients with advanced chronic kidney disease. BMJ Support. Palliat. Care 6, 66–74 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Köttgen, A. et al. Genetics in chronic kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) controversies conference. Kidney Int. 101, 1126–1141 (2022).

    Article 

    Google Scholar
     

  • Bergmann, C. et al. Polycystic kidney disease. Nat. Rev. Dis. Prim. 4, 50 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Bergmann, C. Genetics of autosomal recessive polycystic kidney disease and its differential diagnoses. Front. Pediatr. 5, 221 (2018).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Warady, B. A. et al. Alport syndrome classification and management. Kidney Med. 2, 639–649 (2020).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Živná, M. et al. Autosomal dominant tubulointerstitial kidney disease: a review. Am. J. Med. Genet. C. Semin. Med. Genet. 190, 309–324 (2022).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Elliott, M. D. et al. Clinical and genetic characteristics of CKD patients with high-risk APOL1 genotypes. J. Am. Soc. Nephrol. 34, 909–919 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, M. Y., Chen, Y. C., Chiu, I. J. & Wu, M. S. Genetic insight into primary glomerulonephritis. Nephrology 27, 649–657 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, L. et al. Genome-wide assessment of genetic risk for systemic lupus erythematosus and disease severity. Hum. Mol. Genet. 29, 1745–1756 (2020).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Liao, L.-N. et al. Genetic risk score for risk prediction of diabetic nephropathy in Han Chinese type 2 diabetes patients. Sci. Rep. 9, 19897 (2019).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Genovese, G. et al. Association of Trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329, 841–845 (2010).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Egbuna, O. et al. Inaxaplin for proteinuric kidney disease in persons with two APOL1 variants. N. Engl. J. Med. 388, 969–979 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • ClinGen. Clinical domain working groups: kidney disease CDWG. https://clinicalgenome.org/working-groups/clinical-domain/clingen-kidney-disease-clinical-domain-working-group/ (2024).

  • Vanholder, R. et al. A policy call to address rare kidney disease in health care plans. Clin. J. Am. Soc. Nephrol. 18, 1510–1518 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Abe, S. et al. Explainable AI for estimating pathogenicity of genetic variants using large-scale knowledge graphs. Cancers 15, 1118 (2023).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Khan, A. et al. Genome-wide polygenic score to predict chronic kidney disease across ancestries. Nat. Med. 28, 1412–1420 (2022).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Wei, L., Han, Y. & Tu, C. Molecular pathways of diabetic kidney disease inferred from proteomics. Diabetes Metab. Syndr. Obes. 16, 117–128 (2023).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Bai, Y. et al. Urinary proteome analysis of acute kidney injury in post-cardiac surgery patients using enrichment materials with high-resolution mass spectrometry. Front. Bioeng. Biotechnol. 10, 1002853 (2022).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Moledina, D. G. et al. Identification and validation of urinary CXCL9 as a biomarker for diagnosis of acute interstitial nephritis. J. Clin. Invest. 133, e168950 (2023).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Pontillo, C. & Mischak, H. Urinary peptide-based classifier CKD273: towards clinical application in chronic kidney disease. Clin. Kidney J. 10, 192–201 (2017).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Zürbig, P., Mischak, H., Menne, J. & Haller, H. CKD273 enables efficient prediction of diabetic nephropathy in nonalbuminuric patients. Diabetes Care 42, e4–e5 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Critselis, E., Vlahou, A., Stel, V. S. & Morton, R. L. Cost-effectiveness of screening type 2 diabetes patients for chronic kidney disease progression with the CKD273 urinary peptide classifier as compared to urinary albumin excretion. Nephrol. Dial. Transpl. 33, 441–449 (2018).

    Article 

    Google Scholar
     

  • Hocher, B. & Adamski, J. Metabolomics for clinical use and research in chronic kidney disease. Nat. Rev. Nephrol. 13, 269–284 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vanholder, R., Pletinck, A., Schepers, E. & Glorieux, G. Biochemical and clinical impact of organic uremic retention solutes: a comprehensive update. Toxins 10, 33 (2018).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Glorieux, G., Nigam, S. K., Vanholder, R. & Verbeke, F. Role of the microbiome in gut-heart-kidney cross talk. Circ. Res. 132, 1064–1083 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zoccali, C. et al. Cardiovascular complications in chronic kidney disease: a review from the European Renal and Cardiovascular Medicine Working Group of the European Renal Association. Cardiovasc. Res. 119, 2017–2032 (2023).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Angelotti, M. L., Antonelli, G., Conte, C. & Romagnani, P. Imaging the kidney: from light to super-resolution microscopy. Nephrol. Dial. Transpl. 36, 19–28 (2021).

    Article 
    CAS 

    Google Scholar
     

  • van Timmeren, C. D., Tanadini-Lang, S., Alkadhi, H. & Baessler, B. Radiomics in medical imaging: “how-to” guide and critical reflection. Insights Imaging 11, 91 (2020).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Arimura, H., Soufi, M., Kamezawa, H., Ninomiya, K. & Yamada, M. Radiomics with artificial intelligence for precision medicine in radiation therapy. J. Radiat. Res. 60, 150–157 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Prasad, P. V., Li, L.-P., Hack, B., Leloudas, N. & Sprague, S. M. Quantitative blood oxygenation level dependent magnetic resonance imaging for estimating intra-renal oxygen availability demonstrates kidneys are hypoxemic in human CKD. Kidney Int. Rep. 8, 1057–1067 (2023).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • A research study to find out how semaglutide works in the kidneys compared to placebo, in people with type 2 diabetes and chronic kidney disease (the REMODEL trial) (REMODEL). ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT04865770 (2024).

  • Heydari, Z. et al. Organoids: a novel modality in disease modeling. Biodes Manuf. 4, 689–716 (2021).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Osafune, K. iPSC technology-based regenerative medicine for kidney diseases. Clin. Exp. Nephrol. 25, 574–584 (2021).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Wang, J., Lin, Y., Chen, X., Liu, Y. & Zhou, T. Mesenchymal stem cells: a new therapeutic tool for chronic kidney disease. Front. Cell Dev. Biol. 10, 910592 (2022).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Zhou, T. et al. Challenges and advances in clinical applications of mesenchymal stromal cells. J. Hematol. Oncol. 14, 24 (2021).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Huang, J., Kong, Y., Xie, C. & Zhou, L. Stem/progenitor cell in kidney: characteristics, homing, coordination, and maintenance. Stem Cell Res. Ther. 12, 197 (2021).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Poulsom, R. et al. Bone marrow contributes to renal parenchymal turnover and regeneration. J. Pathol. 195, 229–235 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, W., Li, Y., Han, M. & Jang, J. Regulatory mechanisms and reversal of CD8+ T cell exhaustion: a literature review. Biology 12, 541 (2023).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Kelley, R. et al. A population of selected renal cells augments renal function and extends survival in the ZSF1 model of progressive diabetic nephropathy. Cell Transpl. 22, 1023–1039 (2013).

    Article 

    Google Scholar
     

  • Bruce, A. T. et al. Selected renal cells modulate disease progression in rodent models of chronic kidney disease via NF-κB and TGF-β1 pathways. Regen. Med. 10, 815–839 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stenvinkel, P. et al. Implantation of autologous selected renal cells in diabetic chronic kidney disease stages 3 and 4-clinical experience of a ‘First in Human’ study. Kidney Int. Rep. 1, 105–113 (2016).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • A long-term follow-up study of participants exposed to REACT. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT05918523 (2024).

  • Köllner, S. M. S., Seifert, L., Zahner, G. & Tomas, N. M. Strategies towards antigen-specific treatments for membranous nephropathy. Front. Immunol. 13, 822508 (2022).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Peek, J. L. & Wilson, M. H. Cell and gene therapy for kidney disease. Nat. Rev. Nephrol. 19, 451–462 (2023).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Rao, V. K., Kapp, D. & Schroth, M. Gene therapy for spinal muscular atrophy: an emerging treatment option for a devastating disease. J. Manag. Care Spec. Pharm. 24, S3–S16 (2018).

    PubMed 

    Google Scholar
     

  • Li, J., Qi, G., Tu, G., Yang, C. & Rong, R. Gene therapy in kidney transplantation: evidence of efficacy and future directions. Curr. Gene Ther. 17, 434–441 (2018).

    Article 

    Google Scholar
     

  • Abordo-Adesida, E. et al. Stability of lentiviral vector-mediated transgene expression in the brain in the presence of systemic antivector immune responses. Hum. Gene Ther. 16, 741–751 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bulcha, J. T., Wang, Y., Ma, H., Tai, P. W. L. & Gao, G. Viral vector platforms within the gene therapy landscape. Signal. Transduct. Target. Ther. 6, 53 (2021).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Yuzefovych, Y. et al. Genetic engineering of the kidney to permanently silence MHC transcripts during ex vivo organ perfusion. Front. Immunol. 11, 265 (2020).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Xiang, H., Zhang, C. & Xiong, J. Emerging role of extracellular vesicles in kidney diseases. Front. Pharmacol. 13, 985030 (2022).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Montgomery, R. A., Mehta, S. A., Parent, B. & Griesemer, A. Next steps for the xenotransplantation of pig organs into humans. Nat. Med. 28, 1533–1536 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perico, N., Casiraghi, F. & Remuzzi, G. Clinical kidney xenotransplantation Major progress but more work needs to be done. Nephron 146, 610–615 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Cooper, D. K., Ekser, B. & Ramsoondar, J. et al. The role of genetically engineered pigs in xenotransplantation research. J. Pathol. 238, 288–299 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Wijkstrom, M., Iwase, H., Paris, W. & Hara, H. et al. Xenotransplantation: experimental progress and clinical prospects. Kidney 91, 790–796 (2017).

    CAS 

    Google Scholar
     

  • Xi, J., Zheng, W., Chen, M. & Zou, Q. et al. Genetically engineered pigs for xenotransplantation: hopes and challenges. Front. Cell Dev. Biol. 10, 1093534 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Anand, R. P., Layer, J. V., Heja, D. & Hirose, T. et al. Design and testing of a humanized porcine donor for xenotransplantation. Nature 622, 393–401 (2023).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Montgomery, R. A., Stern, J. M., Lonze, B. E. & Tatapudi, V. S. et al. Results of two cases of pig-to-human kidney xenotransplantation. N. Engl. J. Med. 386, 1889–1898 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Porrett, P. M., Orandi, B. J., Kumar, V. & Houp, J. et al. First clinical-grade porcine kidney xenotransplant using a human decedent model. Am. J. Transpl. 22, 1037–1053 (2022).

    Article 

    Google Scholar
     

  • Hawthorne, W. J. World first pig‐to‐human cardiac xenotransplantation. Xenotransplantation 29, e12733 (2022).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Griffith, B. P., Goerlich, C. E., Singh, A. K. & Rothblatt, M. et al. Genetically modified porcine-to-human cardiac xenotransplantation. N. Engl. J. Med. 387, 35–44 (2022).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Loupy, A., Goutaudier, V., Giarraputo, A. & Mezine, F. et al. Immune response after pig-to-human kidney xenotransplantation: a multimodal phenotyping study. Lancet 402, 1158–1169 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mohiuddin, M. M., Singh, A. K., Scobie, L. & Goerlich, C. E. et al. Graft dysfunction in compassionate use of genetically engineered pig-to-human cardiac xenotransplantation: a case report. Lancet 29, 397–410 (2023).

    Article 

    Google Scholar
     

  • Fransen, M. F. J. et al. Bioprinting of kidney in vitro models: cells, biomaterials, and manufacturing techniques. Essays Biochem. 65, 587–602 (2021).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Tang, Y. S., Tsai, Y. C., Chen, T. W. & Li, S. Y. Artificial kidney engineering: the development of dialysis membranes for blood purification. Membranes 12, 177 (2022).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Jin, Q., Leaman, R. & Lu, Z. Retrieve, summarize, and verify: how will chatGPT affect information seeking from the medical literature? J. Am. Soc. Nephrol. 34, 1302–1304 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Kashani, K. & Herasevich, V. Sniffing out acute kidney injury in the ICU: do we have the tools? Curr. Opin. Crit. Care 19, 531–536 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Rahman, M., Shad, F. & Smith, M. C. Acute kidney injury: a guide to diagnosis and management. Am. Fam. Physician 86, 631–639 (2012).

    PubMed 

    Google Scholar
     

  • Koyner, J. L., Carey, K. A., Edelson, D. P. & Churpek, M. M. The development of a machine learning inpatient acute kidney injury prediction model. Crit. Care Med. 46, 1070–1077 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Segal, Z. et al. Machine learning algorithm for early detection of end-stage renal disease. BMC Nephrol. 21, 518 (2020).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Chuah, A. et al. Machine learning improves upon clinicians’ prediction of end stage kidney disease. Front. Med. 9, 837232 (2022).

    Article 

    Google Scholar
     

  • Yoo, K. D. et al. A machine learning approach using survival statistics to predict graft survival in kidney transplant recipients: a multicenter cohort study. Sci. Rep. 7, 8904 (2017).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Chaudhuri, S. et al. Machine learning directed interventions associate with decreased hospitalization rates in hemodialysis patients. Int. J. Med. Inform. 153, 104541 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Bozzetto, M. et al. Clinical use of computational modeling for surgical planning of arteriovenous fistula for hemodialysis. BMC Med. Inf. Decis. Mak. 17, 26 (2017).

    Article 

    Google Scholar
     

  • Zhang, H. et al. Deep learning to classify arteriovenous access aneurysms in hemodialysis patients. Clin. Kidney J. 15, 829 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Barbieri, C. et al. An international observational study suggests that artificial intelligence for clinical decision support optimizes anemia management in hemodialysis patients. Kidney Int. 90, 422–429 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, H. et al. Real-time prediction of intradialytic hypotension using machine learning and cloud computing infrastructure. Nephrol. Dial. Transpl. 38, 1761–1769 (2023).

    Article 

    Google Scholar
     

  • Huo, Y., Deng, R., Liu, Q., Fogo, A. B. & Yang, H. AI applications in renal pathology. Kidney Int. 99, 1309–1320 (2021).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Xi, I. L. et al. Deep learning to distinguish benign from malignant renal lesions based on routine MR imaging. Clin. Cancer Res. 26, 1944–1952 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Fuertinger, D. H., Topping, A., Kappel, F., Thijssen, S. & Kotanko, P. The virtual anemia trial: an assessment of model‐based in silico clinical trials of anemia treatment algorithms in patients with hemodialysis. CPT Pharmacomet. Syst. Pharmacol. 7, 219 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kamel Boulos, M. N. & Zhang, P. Digital twins: from personalised medicine to precision public health. J. Pers. Med. 11, 745 (2021).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Bohr, A. & Memarzadeh, K. The rise of artificial intelligence in healthcare applications. In Artificial Intelligence in Healthcare (eds Bohr, A. & Memarzadeh, K.) Ch. 2, 25–60 (Academic, 2020); https://doi.org/10.1016/B978-0-12-818438-7.00002-2.

  • INCLUSION. 10 steps to more ethical artificial intelligence. https://inclusioncloud.com/insights/blog/ethical-artificial-intelligence (accessed 1 March 2024).

  • Glaser, J. et al. Climate change and the emergent epidemic of CKD from heat stress in rural communities: the case for heat stress nephropathy. Clin. J. Am. Soc. Nephrol. 11, 1472–1483 (2016).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Lunyera, J. et al. CKD of uncertain etiology: a systematic review. Clin. J. Am. Soc. Nephrol. 11, 379–385 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xia, J. et al. Cigarette smoking and chronic kidney disease in the general population: a systematic review and meta-analysis of prospective cohort studies. Nephrol. Dial. Transplant. 32, 475–487 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, Y. et al. Associations between long-term exposure to low-level air pollution and risk of chronic kidney disease-findings from the Malmö Diet and Cancer cohort. Env. Int. 160, 107085 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kim, Y. J., Choi, W.-J., Ham, S., Kang, S.-K. & Lee, W. Association between occupational or environmental noise exposure and renal function among middle-aged and older Korean adults: a cross-sectional study. Sci. Rep. 11, 24127 (2021).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Yang, T., Richards, E. M., Pepine, C. J. & Raizada, M. K. The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease. Nat. Rev. Nephrol. 14, 442–456 (2018).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Gryp, T. et al. Gut microbiota generation of protein-bound uremic toxins and related metabolites is not altered at different stages of chronic kidney disease. Kidney Int. 97, 1230–1242 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hall, G., Wang, L. & Spurney, R. F. TRPC channels in proteinuric kidney diseases. Cells 9, 44 (2019).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Reilly, D. F. & Breyer, M. D. The use of genomics to drive kidney disease drug discovery and development. Clin. J. Am. Soc. Nephrol. 15, 1342–1351 (2020).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Yu, M. et al. Discovery of a potent and selective TRPC5 inhibitor, efficacious in a focal segmental glomerulosclerosis model. ACS Med. Chem. Lett. 10, 1579–1585 (2019).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Willer, C. J. et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 45, 1274–1283 (2013).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Katzmann, J. L. & Laufs, U. PCSK9-directed therapies: an update. Curr. Opin. Lipidol. https://doi.org/10.1097/MOL.0000000000000919 (2024).

  • Pinto, N. & Eileen Dolan, M. Clinically relevant genetic variations in drug metabolizing enzymes. Curr. Drug. Metab. 12, 487–497 (2011).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Song, I. S., Shin, H. J. & Shin, J. G. Genetic variants of organic cation transporter 2 (OCT2) significantly reduce metformin uptake in oocytes. Xenobiotica 38, 1252–1262 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kajiwara, M. et al. Identification of multidrug and toxin extrusion (MATE1 and MATE2-K) variants with complete loss of transport activity. J. Hum. Genet. 54, 40–46 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, R. et al. Impact of HLA-B*58:01 allele and allopurinol-induced cutaneous adverse drug reactions: evidence from 21 pharmacogenetic studies. Oncotarget 7, 81870–81879 (2016).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Min, S. et al. An integrated clinical and genetic prediction model for tacrolimus levels in pediatric solid organ transplant recipients. Transplantation 106, 597–606 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dean, L. Azathioprine therapy and TPMT genotype. Medical Genetics Summaries https://www.ncbi.nlm.nih.gov/books/NBK100661/bin/20160503azathioprine.pdf (NCBI, 2012).

  • Genvigir, F. D. V., Cerda, A., Hirata, T. D. C., Hirata, M. H. & Hirata, R. D. C. Mycophenolic acid pharmacogenomics in kidney transplantation. J. Transl. Genet. Genom. 4, 320–355 (2020).


    Google Scholar
     

  • Anaya, B. J. et al. Engineering of 3D printed personalized polypills for the treatment of the metabolic syndrome. Int. J. Pharm. 642, 123194 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Jong, W. H. & Borm, P. J. A. Drug delivery and nanoparticles: applications and hazards. Int. J. Nanomed. 3, 133–149 (2008).

    Article 

    Google Scholar
     

  • Li, W. et al. Targeted drug delivery systems for kidney diseases. Front. Bioeng. Biotechnol. 9, 683247 (2021).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Valentijn, P. P., Biermann, C. & Bruijnzeels, M. A. Value-based integrated (renal) care: setting a development agenda for research and implementation strategies. BMC Health Serv. Res. 16, 330 (2016).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Collister, D. et al. Multidisciplinary chronic kidney disease clinic practices: a scoping review. Can. J. Kidney Health Dis. 6, 205435811988266 (2019).

    Article 

    Google Scholar
     

  • Morton, R. L. & Sellars, M. From patient-centered to person-centered care for kidney diseases. Clin. J. Am. Soc. Nephrol. 14, 623–625 (2019).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Diamantidis, C. J. & Becker, S. Health information technology (IT) to improve the care of patients with chronic kidney disease (CKD). BMC Nephrol. 15, 7 (2014).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Burgos-Calderón, R., Depine, S. Á. & Aroca-Martínez, G. Population kidney health. a new paradigm for chronic kidney disease management. Int. J. Env. Res. Public. Health 18, 6786 (2021).

    Article 

    Google Scholar
     

  • Levin, A. et al. Perspectives on early detection of chronic kidney disease: the facts, the questions, and a proposed framework for 2023 and beyond. Kidney Int. 103, 1004–1008 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Brenner, B. M., Garcia, D. L. & Anderson, S. Glomeruli and blood pressure. Less of one, more the other? Am. J. Hypertens. 1, 335–347 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, E. & Chai, E. Kidney supportive care in peritoneal dialysis: developing a person-centered kidney disease care plan. Kidney Med. 4, 100392 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Nagai, K. & Itsubo, N. Environmental impact of care for end-stage kidney disease on the earth and humans. JMA J. 5, 109–113 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Vanholder, R. et al. Inequities in kidney health and kidney care. Nat. Rev. Nephrol. 19, 694–708 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Langham, R. G. et al. Kidney health for all: bridging the gap in kidney health education and literacy. Nephrol. Dial. Transpl. 37, 605–612 (2022).

    Article 

    Google Scholar
     

  • Consideration of sex differences is necessary to achieve health equity. Nat. Rev. Nephrol. 20, 1 (2024).

    Article 

    Google Scholar
     

  • Mallamaci, F. & Tripepi, G. Shedding a light on sex disparity in clinical trials in CKD patients. Clin. Kidney J. 16, 1369–1371 (2023).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Yeates, K., Ghosh, S. & Kilonzo, K. Developing nephrology programs in very low-resource settings: challenges in sustainability. Kidney Int. Suppl. 3, 202–205 (2013).

    Article 

    Google Scholar
     

  • Kam-Tao Li, P. et al. Kidney health for everyone everywhere from prevention to detection and equitable access to care. Nephrology 24, 9–21 (2020).


    Google Scholar
     

  • Orach, C. G. Health equity: challenges in low income countries. Afr. Health Sci. 9, S49–S51 (2009).

    PubMed 

    Google Scholar
     

  • Luyckx, V. A., Tonelli, M. & Stanifer, J. W. The global burden of kidney disease and the sustainable development goals. Bull. World Health Organ. 96, 414–422D (2018).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar